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Abstract

In this paper we motivate the use of capsule networks
for facial action unit detection. Action unit activations may
be seen as local part deformations - for example AU 1,2,
and 4 are deformations of the part ‘eyebrows’. Different
part deformations in a regular convolutional network must
be modeled and represented as separate neurons since each
neuron has a scalar activation. However, with capsule net-
works different part deformations can be modeled by the
same capsule since it has a more expressive vector based
representation. We argue that this property makes capsule
networks well suited for the task of action unit recognition
and demonstrate this by developing and testing capsule net-
works for the AU recognition. We achieve state-of-the-art
results on the BP4D and DISFA datasets. We analyse the
learned capsules’ properties and find that capsule magni-
tude correlates with expression intensity and that capsule
pose captures varied attributes such as face size, lighting,
pose, and skin color. Finally we use activation gradient
ascent to visualize capsule direction, and find that a sin-
gle capsule can represent multiple deformations of the same
part, while a single convolution neuron does not.

1. Introduction

Facial Action Coding System (FACS) is a system to de-
fine and name facial movements by their appearance on the
face. Informed by the underlying muscular structure of a
face, FACS annotation can be reliably used for describing
as well as identifying facial expressions. There are 24 main
facial action units to describe the human face. Addition-
ally, action units can also be coded for intensity on a 4 to
5 point scale. While, extremely useful, manual action unit
coding is a cumbersome process that can only be carried
out by trained experts. Due to this hurdle, automatic action
unit detection is an important problem for computer vision
research.

Facial action unit detection requires identifying subtle
deformations on parts of the face. Consequently, features
that capture local movements around key parts of the face

have been used to train machine learning systems. For ex-
ample, in [1], a seminal work on emotion and facial action
unit understanding, Gabor features were extracted around
keypoints of the face to capture local muscle deformations.
Developing features that capture part deformations well has
also motivated more recent work [42, 19] where separate
convolutional filters are trained to correspond to different
parts of the face. The motivation behind these works is sim-
ilar — the better we are able to model how parts of a face
look and change, the better we can detect action units.

Recently, capsule networks [30, 13] were introduced. In
theory, capsules have two primary advantages over regu-
lar convolutional neural networks (CNNs). Intuitively, neu-
rons in a CNN can represent an attribute of the input im-
age — such as the presence of an eye — and the activation
of a neuron represents a confidence value in whether that
attribute can be found in the image. With capsules the ex-
pressive power is increased - its activation can represent a
confidence value in its presence or absence, and its direc-
tion can represent properties of the attribute. For example,
the direction of the capsule can indicate how rotated the eye
is, whether it is open or closed, etc. The second advantage
of capsules is that the additional representative capacity al-
lows for complex routing procedures. The pose of a capsule
can be used to determine how it is propagated through the
network. This is in contrast to neuron activations in a CNN
that are propagated solely on the basis of its scalar value.
As a result, the routing procedure followed by capsule net-
works can mimic the effect of a much deeper convolution
neural network, trained with various data transformed aug-
mentation techniques.

We believe that the higher expressive power capsules af-
ford to each visual attribute of an image can directly trans-
late to better modeling of local part deformations. Action
unit activations can be seen as local part deformations, and
therefore capsules can be better at detecting and modeling
action units. To give a naive parallel example, if a capsule
learns to detect lips, its pose can represent the type of de-
formation the lips are in — so different capsule poses can
represent action units 12, 14, 15. At the same time, for a
convolutional network, if a neuron comes to be associated



with lips, it cannot express the pose the lips are in. It can
simply be either active - indicating the presence of lips — or
inactive — indicating that the lips are not present. In order
to represent lips in AU-12 or in AU-15, the network must
learn to associate separate neurons.

Contributions. Our main contributions are:

1) We present results that indicate that capsules are in-
deed better than CNNss at modeling local part deformations
- and therefore action units. Previous work [30, 13] have
shown that capsules can model global deformations - so the
network can generalize well across image level deforma-
tions (affine transformations of MNIST), or viewpoint de-
formations (azimuth changes on small-NORB). In this pa-
per, we show that capsules can also capture small deforma-
tions well - and may therefore be useful in other areas such
as fine-grained classification.

2) We develop a capsule network for action unit detec-
tion that gives state-of-the-art results across two large action
unit datasets. On BP4D dataset we outperform the closest
baseline architecture by 14.1% in AUC. We replicate sim-
ilar performance gains on DISFA. We additionally present
results on emotion recognition for CK+ dataset, and find
that our architecture generalizes well.

3) To the best of our knowledge, capsule networks have
not been used to perform facial action unit detection. To
this end, we thoroughly analyze and visualize the learned
capsule networks. We visualize the effect of changing cap-
sule magnitude as well as capsule direction via a recon-
struction network. We find that capsules are able to model
face pose, shape, lighting, and skin color, and that capsule
magnitude is correlated with action unit or emotion inten-
sity. Finally, we use activation maximization visualization
on capsule features and compare them with regular convo-
lutional networks and find that a single capsule can capture
visually dissimilar part deformations across identities and
across parts of the face.

2. Related Work

Capsules Capsule networks were first proposed in [30].
The network replaces scalar neurons with higher dimension
capsules - so that activation and neuron attributes can be
modeled jointly. In addition, capsule direction or pose can
be used to route capsules between higher layers - which
replaces pooling based routing in convolutional networks.
In [13], the authors propose vector capsules whose magni-
tude represents the activation of a capsule. Iterative rout-
ing is done using a simple agreement between lower and
higher level capsule directions. In [13] the authors intro-
duce matrix capsules, where a separate value represents the
capsule activation. Routing is done using an EM algorithm,
such that the probability distributions of higher and lower
level capsules between consecutive layers are in agreement.

Furthermore, the authors introduce convolutional capsules,
whereas [30] only worked with fully-connected capsules.
In this paper, we use vector capsules, with dynamic routing,
and work with fully-connected capsules only.

Facial Action Unit Understanding Papers in action unit
understanding have focused on two broad sub problems -
action unit intensity estimation, and action unit detection.

A number of traditional non-deep approaches improve
action unit understanding by exploiting the co-occurrence
patterns between action units - either by developing a
learning model that can help capture inter-AU relations
[35, 38, 7], by developing a model based on prior knowl-
edge of AU relationships and semantics [33, 20], or by using
a data-driven approach to learn important AU relationships
[45]. In particular, [41] jointly learns to identify important
patches, and positive and negative correlations between ac-
tion units for understanding action units.

Traditional approaches have also learned action units by
assistance from facial keypoints - features extracted around
keypoints are used for action unit detection. Some examples

of such approaches are [7, 18, 3, 34, 37].
Deep learning has also been applied to the problem of ac-
tion unit detection with great success [9, 10, 14, 11,42, 19].

Among these, two papers in particular require discussion.
In [42], the authors develop a ‘region layer’ that splits the
incoming convolution map into a grid and develops sepa-
rate convolutional maps for each grid section. The result-
ing map is concatenated spatially and propagated through
the network. In a similar vein, [19] also explicitly design
their deep network to develop features for parts of a con-
volutional map. Both methods explore a similar idea - to
develop separate features for parts of a face - as is based on
the intuition that different areas of the face correspond to
different AU activations that require their own unique set of
features for identification.

More recently, [12] develops separate neural networks
to detect each action unit where convolutional filter size
is learned during training, while [40, 29] do weakly-
supervised action unit recognition.

In concurrent work [5], input images are cropped into
patches that are in turn used to predict AUs via fusion of
multiple deep neural networks’ predictions and a message
passing based structure inference module. In [31], addi-
tional annotated data is used to do joint face alignment and
AU detection while using an adaptive attention module.

Modeling Facial Expressions Facial expression predic-
tion is a well-explored topic of research in computer vi-
sion. We primarily focus on action unit detection, but also
show qualitative and quantitative results on expression de-
tection. Some approaches that do not use deep learning are,
[1, 8, 32, 44], of which [1] is of particular note for cre-
ating a pipeline based on extracting features around facial



keypoints, detecting action units, and fusing action unit de-
tections temporally for emotion detection.

A number of papers also explore emotion understanding
in a simple deep feed-forward classification network set-
ting [23, 16, 26, 43, 6]. [21, 22] attempt to enforce AU un-
derstanding to the end of emotion classification. Of these,
[16] is notable for impressive results on expression detec-
tion and demonstrating the importance of data augmenta-
tion for the task of expression understanding. [6] is also an
important paper that proposes a two-stage training pipeline
to transfer VGG-Face [28] features for the task of expres-
sion classification. Also noteworthy is [15], which uses fa-
cial keypoint locations over time to train a network that is
meant to capture temporal deformations alongside a tradi-
tional image-based CNN. Lastly, [ 7] proposes an encoder-
decoder architecture that learns from pairs of neutral/non-
neutral expressions to develop features that are discrimina-
tive for expression classification. Similarly, in [36] learns
to identify facial expressions as the residue between faces
showing non-neutral expressions, and their corresponding
neutral expression.

3. Approach

Our proposed network comprises three parts - convolu-
tion layers, capsule layers, and a reconstruction module.

The first is a series of convolution layers that learn loca-
tion invariant features and downsample the input. These are
followed by a primary and a class capsule layer. Each pri-
mary capsule comprises multiple convolution filters whose
outputs are joined to form a vector, then treated as the cap-
sule activation. These primary capsules’ vector outputs are
then dynamically routed via direction agreement to the class
capsules. There are n class capsules, each fully connected
to the primary capsules, where n is the number of classes
in the training data. Like primary capsules, each class cap-
sule’s activation is a vector, where its magnitude represents
activation strength or the network’s detection confidence for
that class. Finally, the reconstruction network uses the class
capsules’ output to reconstruct the input image. Its input is
the concatenated output of all class capsules, and its output
is an image the same size as the input image. It comprises
a series of fully-connected layers whose output is reshaped
and bilinearly-upsampled to match the input size. We use
the same modules as proposed in [30], to which we also
refer the reader for details on the routing algorithm.

Intuitively, the convolution layers serve to develop low
to mid level features for the task. They additionally scale
down the feature map through pooling and strided convolu-
tions for the ensuing computationally heavy capsule opera-
tions. The primary capsules further develop image features
while simultaneously transforming scalar inputs from the
convolution layers below to more complex vector represen-
tations. The class capsules collate the vector outputs of the

primary capsules via routing to form the final class predic-
tions. Additionally, the reconstruction network serves to 1)
help visualize the properties learned by the class capsules,
and 2) regularize the overall network and prevent it from
over fitting.

We use a weighted modification of the margin loss from
[20] to train our network. The loss for class c is:

Le = we(T. max (0, m™ —||ve| )2 4+A1—T.) max (0, ||ve||—m™)?)

where T, = 1 iff class ¢ is present, m™ = 0.9 and
m~ = 0.1, v, is the class capsule, and A is a down weight-
ing term for negative samples. The loss simultaneously en-
courages larger magnitude for positive class capsules, while
encouraging negative class capsules to shrink. Given the
high number of negative samples in our dataset, we set A to
0.5, so that it is half as bad to predict a false positive as it is
to predict a false negative. The class specific weight, w, is
the inverse of an action unit’s frequency in the training data,
normalized across all classes to sum to one. The addition
of a class specific weight term balances the loss penalty so
that infrequent action units are given the same importance
during training as frequent action units.

Note that due to the ‘squashing’ procedure from cap-
sule routing, capsule magnitudes necessarily lie between
0 and 1. Additionally, for single class classification (such
as expression classification) a softmax operation is applied
across all ||v.|| so that a single class has the maximum pre-
diction.

While the margin loss serves to improve accuracy and
train the network to identify action units (or expressions)
correctly, the reconstruction loss serves to regularize the
network while developing visually interpretive features. To
this end, the reconstruction module is trained in a class ag-
nostic manner; during training, the capsules for all classes
apart from the ground-truth classes are zeroed-out and used
as input to the reconstruction network. In this way, the re-
construction network does not, directly, affect classification
accuracy. We use mean square error to supervise the recon-
struction network.

The margin loss is averaged across all action unit in-
stances in a batch, and added with average reconstruction
loss for the batch. The final loss is:

Lfinal = Leis + aLyecon (D

where « is a weight parameter, L....., is the average re-
construction loss, and L, is the average margin loss. We
set « to bring the magnitude of the average reconstruction
loss to be similar to that of the averaged margin loss at the
beginning of training.

3.1. Architectures

We propose two different capsule architectures. Each
is trained with three routing iterations between the primary



AU | LSVM[42] [ JPML[41] | DRML[42] | CPM[37] | CNN+LSTM[4] | FERA[14] | OFS-CNN || Ours AU | FVGG[19] | ROI[19] |[ Ours-VGG | Ours-VGGF
1 232 326 36.4 434 314 28 41.6 46.8 1 2738 36.2 46.3 473
2 2238 25.6 41.8 40.7 31.1 28 30.5 29.1 2 27.6 316 41.6 39.9
4 23.1 37.4 43 434 71.4 34 39.1 529 4 183 434 50.6 52.8
6 272 23 55 59.2 63.3 70 74.5 75.3 6 69.7 77.1 77 71.9
7 47.1 50.5 67 61.3 77.1 78 62.8 77.6 7 69.1 73.7 75.7 79.9
10 772 722 66.3 62.1 45 81 743 82.4 10 78.1 85 82.5 84
12 63.7 74.1 65.8 68.5 82.6 78 81.2 85 12 63.2 87 85.7 88.1
14 64.3 65.7 54.1 52.5 72.9 75 55.5 65.7 14 36.4 62.6 63.1 67.2
15 18.4 38.1 36.7 34 332 20 32,6 33.7 15 26.1 45.7 37.3 49.2
17 33 40 48 54.3 53.9 36 56.8 60.6 17 50.7 58 64.6 65.4
23 19.4 30.4 31.7 39.5 38.6 41 413 36.9 23 22.8 38.3 40 47.7
24 20.7 923 30 37.8 37 - - 43.1 24 35.9 37.4 50.4 55.1

Avg 35.3 459 483 50 532 51.7 53.7 57.4 Avg 438 56.4 59.6 62.9

Table 1. F1-Frame results on BP4D dataset without(left) and with (right) external data.

AU | LSVM | JPML[41] | AlexNet | ConvNet | LCN | DRML || Ours | Ours-VGG | Ours-VGGF
T | 207 407 349 494 | 519 | 557 | 657 653 66.1
2 | 177 421 25.8 513 | 509 | 545 | 56.0 64.8 63.7 AU | LSVM | APL | AlexNet | ConvNet | LCN | DRML | Ours | Ours-VGGF
4 | 229 46.2 36.1 474 | 536 | 588 | 702 70.0 718 1 | 216 | 327 478 442 | 441 | 533 | 582 67.6
6 | 203 40.0 483 522 | 532 | 566 | 713 739 737 2 | 158 | 278 | 521 373 | 524 | 532 | 614 70.0
7 | 448 50.0 543 648 | 637 | 610 || 60.6 62.4 68.5 4 | 172 |379| 440 479 | 477 | 600 | 724 81.2
10 | 734 752 543 614 | 624 | 536 | 708 68.3 70.1 6 | 087 | 136 | 443 385 | 397 | 549 | 649 81.9
12 | 553 60.5 50.0 602 | 616 | 608 || 746 80.8 80.8 9 | 150 | 644 | 487 495 | 402 | 515 | 66.1 76.0
14 | 468 53.6 477 298 | 588 | 570 | 56.7 55.8 575 12 | 938 |942| 553 548 | 547 | 546 | 761 85.5
15 | 183 50.1 349 506 | 499 | 562 || 59.4 61.5 71.2 25 | 034 | 504 | 502 484 | 486 | 456 | 756 85.7
17 | 364 425 485 535 | 484 | 500 || 66.1 69.7 710 26 | 201 | 47.1] 458 458 | 470 | 453 | 732 72.7

23 | 192 51.9 405 495 | 503 | 539 | 616 64.4 69.6 Avg | 275 | 460 | 491 458 | 468 | 523 || 685 776

2% | 117 532 31.7 525 | 477 | 539 || 676 73.9 774

Avg | 322 505 02 518 | 544 | 560 | 650 67.6 70.1

Table 2. AUC scores on BP4D (left) and DISFA (right)

and class capsules.

Our first network is trained with inputs of size 96 x 96.
The capsule network architecture comprises two convolu-
tion layers, with 64 and 128 filters, and kernel size of 5.
Each is followed by max-pooling and ReLu. The convolu-
tion layers are followed by a primary capsule layer with 32
capsules of dimension 8, filter size 7, and stride 3. The re-
sulting activation map is then fully connected to the class
capsule layer with n capsules, each with dimension 32,
where n is the number of output classes. The reconstruc-
tion network comprises 3 fully connected linear layers of
dimension 512, 1024, and 1024. The last layer is reshaped
to 32 x 32 and then bilinearly upsampled to 96 x 96. In
experiments we refer to this model as ‘Ours’, and is trained
from scratch for all experiments.

Additionally, we propose a larger capsule network with
VGG convolution layers as its base. The network is iden-
tical to VGG-16 up to the end of its convolution layers.
The last max-pooling layer is removed - resulting in an
activation map of 14 x 14. This is followed by 32 pri-
mary capsules of size 8, kernel size of 3 and stride of 2.
The following class capsules have dimension 32. The re-
construction network comprises three fully-connected lay-
ers with dimensions 512, 1024, and 9408. The output is
resized to 56 x 56 and then bilinearly upsampled to 224
— the input image size. We show results of this model
with the convolution layers initialized with both Imagenet
pretrained weights (Ours-VGG) and VGG-Face pretrained
weights (Ours-VGGF). For both variants, we found the net-
work to be prone to over fitting despite usage of a recon-
struction network and heavy data augmentation. We there-

fore add spatial dropout after the last convolution layer at
50% for ‘Ours-VGG’ and 70% for ‘Ours-VGGF’.

Finally to balance the two losses in Equation 1 we set o
to 1le — 7 at for the smaller network and 1e — 8 for the larger
VGG based model.

4. Experiments
4.1. Action Unit Detection

Datasets We present results on two widely-used datasets.
BP4D [39]: The dataset contains 328 videos of 31 subjects
while completing eight different tasks designed to elicit
emotion. Frames are annotated with 12 different action
units. In total there are a little less than 140,000 frames
that are usable. Following common procedure, we do 3 fold
cross validation on subjects - train on 2 folds and test on the
third. Results are collated across folds.

DISFA [25]: 26 subjects are recorded while watching
videos. Action units and their intensity are annotated for
each frame. Similar to BP4D, we conduct 3 fold cross vali-
dation, and collate results across folds.

For both datasets, we detect and align faces using [2].
For data augmentation, we randomly mirror, rotate, scale,
translate, crop, and pixel augment the images.

Metrics We report Fl-Frame score and AUC. The Fl
score is the harmonic mean of precision and recall, and used
by AU detection methods to report results. AUC is the area
under the curve of the receiver operating curve and captures
the relationship between true and false positives.



AU [ LSVM[+2] | APL[#2] | DRML[+2] | OFS-CNN[12] Ours
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Table 3. F1-Frame results on DISFA dataset without (left) and with
(right) external data.

Implementation Details For ‘Ours’ on BP4D, we train
for ten epochs with a learning rate of le-4. For finetuning
on DISFA, we transfer convolution features only, and train
with a learning rate of le-4 for the first 5 epochs, and then
at le-5 for the remaining 5 epochs.

For ‘Ours-VGGF’ we follow the procedure from ROI
[19] and fix all convolution layers up to conv5. We fine-
tune the convS5 layers at a 10 times lower learning rate, and
train for 5 epochs. The capsule, and reconstruction layers
are trained with a le-4 learning rate. For ‘Ours-VGG’, we
additionally finetune the first four convolution layers, and
train for 10 epochs. For DISFA finetuning, we initialize the
convolution layers’ weights with the best performing BP4D
model (which is Ours-VGGEF for the first fold of BP4D),
and keep them fixed while training the capsule and recon-
struction layers for 4 epochs at le-4 learning rate.

Results In Table 1, we compare F1 scores of our method
against baselines. Without external data, our method out-
performs the closest baseline by 4.2%, and with external
data, our method outperforms ROI by 6.5%. Note that we
do not compare against versions of ROI that use sequential
input. In Table 2, we show AUC results for both datasets,
and in Table 3, we compare F1 scores for DISFA. With-
out external data, while our method does not outperform
OFS-CNN [12] we outperform the second closest baseline
by 15.6%. With external data, our performance is similarly
high with a 6.6% margin. On BP4D, OFS-CNN is not able
to outperform our model.

Since OFS-CNN [ 2] relies on separate small neural net-
works to develop specialized features for each action unit, it
can perform well on DISFA - a small dataset with relatively
even distribution of different action units, but has less im-
pressive performance on BP4D which may need a larger ca-
pacity network and joint learning across AUs. ROI [19] on
the other hand uses a bigger model that can easily fall in to
the trap of exploiting correlation information to make pre-
dictions without understanding the visual features of each
AU. Our method on the other hand forms a happy medium
- the capsule network is relatively lightweight and can be
trained on a small dataset with careful regularization. At the
same time, it is jointly trained to identify all AUs and can
therefore learn features that are collectively useful. Lastly,
our use of capsule units allows our network to learn and
propagate visual properties that are complex and cannot be
captured as easily by a convolution network of equivalent

Method Accuracy
AURF[21] 92.2
AUDBI[22] 93.7
Khorrami[ 16] 96.4 BP4D | DISFA
GCNet*[17] 97.28 DSIN[5] 58.9 53.6
JAA-Net[31] 60 56
DeRF*[36] 97.30 Ours VGGF | 629 | 55.1
FN2EN*[6] 96.8
Ours 93.7
Ours-Max 96.2
Table 4. (Left) Results on 8 emotion classification against sev-

eral state of the art methods. Starred methods use external data.
(Right) Comparison of F1-Frame scores with concurrent work.
Our method gives comparable results, while being simpler and
easier to train.

size. We further analyze this quality in Section 4.4.

Finally, in Table 4, we compare the F1 score of our best
model against concurrent work for both datasets. Despite a
simple feed forward architecture operating on the entire im-
age unlike [5], and without the use of additional annotation
unlike [3 1], our method has a comparable F1 score.

4.2. Emotion Detection

We also explore the use of capsules on the related task of
emotion recognition on the Cohn-Kanade dataset [24]. We
follow the established protocol of 10 fold cross validation,
and average results across folds.

Table 4 (left) shows our results on 8 emotion classifica-
tion against several state-of-the-art methods. Our results are
comparable to the state-of-the-art. We found that test results
were prone to fluctuate throughout training, and due to the
small dataset size, some folds were prone to overfit. We
therefore also report the best test accuracy we achieve dur-
ing training as ‘Ours Max’ to provide an idea of the upper
limit our model may achieve with more careful training and
hyperparameter searching.

4.3. Visualizing Capsules by Reconstruction

Every class capsule is a 32 length long vector. This vec-
tor can be modified by rescaling its magnitude, or altering
its direction. For each altered version of an input image’s
correct class capsule, we can use the reconstruction network
to visualize the effect.

Magnitude Since capsule magnitude represents the con-
fidence of our network in a capsule class’s presence in the
image, we expect increasing capsule magnitude to create
reconstructions that represent that class even more. For ex-
ample, we would expect the reconstruction of a ‘surprise’
capsule with less magnitude to show less surprise than that
with a higher magnitude.

Figure 1 shows reconstructions of different expression
capsules with increasing magnitude. From left to right the
magnitude is increased from 0.1 to 0.9 at increments of 0.1.
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Figure 1. We show the effect of altering magnitude of a class capsule. As activation strength of a capsule increases, the intensity of the

facial expression also increases.
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Figure 2. Reconstructions of test images with increasing capsule
magnitude (left to right) on the BP4D dataset

The leftmost image is the input image. For each of the cap-
sules, we see the expression become more pronounced and
exaggerated. For example, for happiness (row 1), the smile
in subsequent reconstructions becomes wider. Similarly, for
surprise (row 2), a dark spot resembling an open mouth be-
gins to appear, eventually resembling a full jaw drop.

When we repeat this experiment with our AU detection
network, this time increasing the magnitude of all action
units that are present in the image, the results are less clear.
For BP4D Figure 2 increasing magnitude results in unique
features of the image being exaggerated, such as skin color
(1st row). At the same time, certain AUs also become
prominent. The open mouth smile in the 1st row, the jaw
drop in the 2nd row become more apparent as magnitude is
increased. The subtlety of these changes can be due the
difference in AU training data where expression changes
are spontaneous/subtle and not posed/exaggerated as in the
Cohn-Kanade dataset, and are therefore unlikey to affect the
reconstruction loss enough to create a strong supervision
signal.

Direction We can also keep capsule magnitude stable,
while changing its direction. For this, we vary the value of
each of its 32 dimensions between —0.5 and 0.5, and reset
the capsule magnitude to its original magnitude. In Figure
3, we show the effect of changing capsule directions. The
capsule dimensions are associated with attributes as varied
as face shape, skin color, pose, or the visibility of teeth.

4.4. Capsules and Local Deformations

We hypothesize that a single primary capsule is capable
of activating multiple types of part deformations. In other
words, the same capsule can have a high magnitude on the
lip region when a person is smiling or grimacing or pouting

S186 99995 ss
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Figure 3. Visualizing capsule direction. The first row shows face
features and skin change. In the second, teeth appear. The neck in
the last row indicates that the capsules have learned pose attribute.

- but would have a different direction for each type of de-
formation. In this section, we find evidence to support our
hypothesis, and use activation maximization visualization
to gain insight into how capsules model local deformations.

In activation maximization visualization the input image
is treated as a learnable layer, and changed by gradient as-
cent for a particular optimization function, such as the acti-
vation of a neuron in the network. As the network modifies
the input image to increase a neuron’s activation, the input
image begins to show the visual attributes that the neuron
has learned to identify. This process is popularly referred to
as ‘deep dreaming’ - see [27] for an excellent overview.

Since the output of a capsule is a vector and not a scalar,
we do gradient ascent on its magnitude. A naive application
of this method is prone to create high frequency and nonsen-
sical images, which we avoid by using gaussian blurring and
random jittering between gradient ascent iterations as regu-
larization. Recall that primary capsules comprise multiple
convolution units that are applied to the input feature map in
a sliding window fashion. By activating a primary capsule
response at a certain feature map’s spatial location, we can
understand how the capsule interprets deformations of part
of the face in its receptive field. Note that since we align
our input images during training, the correspondence be-
tween primary capsules output maps’ spatial locations and
parts of the input face is easier to establish.

In order to test our hypothesis that a single capsule can
model different part deformations via changes in direction,
we need to ensure three conditions.

First, we need to ensure that the capsule is actually capa-
ble of modeling different types of part deformations - that
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Figure 4. Activation maximization visualizing primary capsules. The first and third row show input test images. The second and fourth
row show the result of activation maximizing for primary capsule 21 around the mouth (top) and capsule 5 around the brows (bottom)
respectively. The results show that a single capsule is able to model multiple deformations. The numbers show cosine similarity before and
after activation maximization - green indicating increase in orthogonality, and red indicating decrease.

-
.

Figure 5. Comparing convolution and capsule units. The top row shows the input images. The second row shows the result of performing
gradient ascent visualization on capsule 21 on the mouth area. The bottom row shows the results on the same input images with convolution
unit 498 from a finetuned VGG-Face network. While a single capsule can have high magnitude with many different types of mouth
positions, a single convolution capsule is only able to maximize activation for a thin mouth with an upturned corner.

it can achieve high magnitude with different types of part
poses. To test this we perform gradient ascent on the pri-
mary capsule activation at the relevant part in a spatial map,
and see if the facial part’s deformation - e.g. how puckered
the lips are - at that location is exaggerated and becomes
more pronounced. This helps us verify what the capsule is
‘seeing’ in the input image. By repeating this process for
different types of input part poses, we are able to test if the

same capsule can identify different kind of part poses.

Second, we need to factor out noisy activations caused
by network error. We therefore use test images that have
100% accurate action unit detection, and have the highest
confidence (or class capsule activation magnitude) per test
subject and per action unit. This also allows us to get varia-
tion in capsule direction naturally.

Third, we need to factor out changes in activation direc-
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Figure 6. Activation maximization on the mouth area for capsule
5. While this capsule is able to model changes in brow position
well (Figure 4) it is ‘sticky’ towards a downturned mouth position.
More similar mouth deformations after gradient ascent also bring
activation directions across images closer.

tion that may be caused by factors other than local part de-
formations - such as changes in skin tone, or facial features.
We therefore compare activations of a primary capsule on
the same part of the face (or activation map) for the same
person, but with different expressions. Though not perfect,
this allows us to factor out variations in primary capsule
activation direction caused by changes in person identity.
At the same time, we compare primary capsules activations
across different test subjects in order to ensure that they are
able to model deformations in an identity agnostic manner.

In Figure 4 we show qualitative evidence supporting our
hypothesis. By performing gradient ascent on the mouth
part of different images for primary capsule 21°s activation
(top), we are able to see very different mouth deformations
become apparent in the input image. Similarly, for capsule
5 we see two distinct brow changes become apparent (bot-
tom). At the same time, these changes are apparent across
different test subjects.

To wunderstand how primary capsules direction is
changed by part deformation, we take the cosine similar-
ity between primary capsule activation at a spatial location
for two images of the same person with a different part de-
formation before and after modifying the input images with
gradient ascent. We find that capsule activations becomes
more orthogonal (closer to zero) when part deformations
after gradient ascent are visually different from each other
(Fig. 4), and less orthogonal when part deformations after
gradient ascent are less different from each other (Fig. 6).

For comparison, we perform similar activation maxi-
mization visualization on convolution units. We finetune a
VGG-Face network for action unit detection using the same
training data. We use the activations of the last convolution
layer after ReLLU and max-pooling for this purpose since it
allows us to have comparable receptive window size as the
primary capsules, and lets us ignore convolution units that
are turned off by ReLLU and therefore irrelevant to the fi-
nal prediction. We forward the same selected test images

through the network and record the convolution units with
the highest activation at the specific spatial locations in the
activation map for each action unit. We then perform gradi-
ent ascent on the activations of these particular convolution
units at selected spatial locations and show the resulting im-
ages in Figure 5. We find that unlike capsules, individual
convolution units are not able to model dramatically dif-
ferent deformations, and either do not activate (post ReLU
activation is 0) or exaggerate a fixed type of attribute exclu-
sively. This is not surprising given that convolution units
have scalar outputs, while capsules have vector outputs that
are capable of representing more complex information. As
a result, while a single primary capsule is able to have high
activations with downturned, puckered, open, and smiling -
among others - mouths, the convolution unit maximizes ac-
tivation with thin mouths with a sharp right upturn across a
range of different type of input images.

Lastly, we find that primary capsules may be more sen-
sitive to some facial parts than others. In Figure 6 we show
activation maximization results on the mouth area for dif-
ferent mouth deformations on the same person for capsule
5. While primary capsule 5 is able to model brow deforma-
tions well in Figure 4, the same capsule is not able to ‘see’
different mouth deformations, and seems to identify only
down turned mouths regardless of the input.

5. Conclusions

In this paper, we explore whether capsule networks are
able to model local part deformations in faces. We tested
this hypothesis by using capsules for action unit detection,
and found that capsules are indeed able to model action unit
activations. Our results demonstrated state-of-the-art re-
sults on action unit detection on two widely-used datasets.
While previous work has shown that capsules are able to
model global deformations, we showed that capsules can
also capture local deformations. This indicates that capsule
networks may also be useful for other tasks where parts of
an object need to be modeled well - such as fine-grained
classification, or human pose estimation and tracking.

In the future, we plan to work on automatic animal fa-
cial expression understanding. For a setting such as an-
imal facial expression understanding where data is scarce
and difficult to both collect and annotate, it becomes critical
to work with models such as capsule networks that are able
to extract rich feature representations with fewer overall pa-
rameters. In addition, the added ease with which capsule
properties can be visualized makes capsule networks an ap-
propriate model working with limited, possibly noisily an-
notated data.
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