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Abstract

We present a data driven approach to holistic scene un-
derstanding. From a single image of an indoor scene, our
approach estimates its detailed 3D geometry, i.e. the lo-
cation of its walls and floor, and the 3D appearance of its
containing objects, as well as its semantic meaning, i.e. a
prediction of what objects it contains. This is made possible
by using large datasets of detailed 3D models alongside ap-
pearance based detectors. We first estimate the 3D layout
of a room, and extrapolate 2D object detection hypotheses
to three dimensions to form bounding cuboids. Cuboids are
converted to detailed 3D models of the predicted semantic
category. Combinations of 3D models are used to create a
large list of layout hypotheses for each image - where each
layout hypothesis is semantically meaningful and geomet-
rically plausible. The likelihood of each layout hypothesis
is ranked using a learned linear model - and the hypothesis
with the highest predicted likelihood is the final predicted
3D layout. Our approach is able to recover the detailed ge-
ometry of scenes, provide precise segmentation of objects in
the image plane, and estimate objects’ pose in 3D.

1. Introduction
The problem of single view 3D scene understanding

has motivated a large amount of computer vision research.
[11, 15, 27] use the Manhattan world assumption to jointly
predict room layout and clutter in indoor scenes. [28] intro-
duces a purely geometric approach that extracts 3D planes
from a single image by using depth ordering, vanishing
points and line direction. [14, 24, 9, 26] use depth esti-
mation to provide predictions of scene’s layout in 3D. In
[21, 19, 20], Markov Chain Monte Carlo based sampling
techniques are used to jointly solve for scene and objects’
layout as well as camera parameters, while [25] proposes an
efficient branch and bound solution to scene’s 3D inference.
The aim of this work is to predict the complete geometry
of a scene from a single image and has applicability in the
fields of both computer vision and graphics. For example,

single image geometry is used by Karsch et al. [13] to re-
alistically alter scenes’ lighting and objects. In computer
vision, Gupta et al. [10] uses an estimate of indoor scene
geometry to predict how different surfaces in a scene are
likely to be used by a human agent.

One theme of research has been to use 3D models to pre-
cisely model objects in images [17, 29, 4]. Lim et al.’s
work [17] is a typical recent example which demonstrates
the strength of using 3D models for the purpose of instance
based object detection. By combining key-point correspon-
dences between images and CAD models of IKEA furni-
ture, and 2D appearance based features, they successfully
perform instance detection and fine grained pose estimation
of scene objects. However the information provided by a
detection, or multiple detections, is not used to extract fur-
ther information from the scene with respect to the room
layout, or objects volume and 3D location.

At the same time a body of research has focused on im-
proving single view scene understanding by modelling con-
textual relations between scene elements in 3D rather than
2D. In [5], for example, a scene classifier, 2D object detec-
tors, and a room layout estimator are simultaneously em-
ployed to provide an estimate of the scene’s geometry, and
its objects’ semantic labels. The system uses a dictionary of
recurring object configurations in 3D to bias its predictions
and hallucinate detections where appropriate. Like other
similarly themed works [12, 19, 15], 3DGP uses bounding
cuboids rather than precise 3D models to represent objects.
Its use of 3D geometric phrases along with its use of proba-
bilistic co-occurrence modelling makes it a non-parametric
system.

These examples illustrate how both these bodies of re-
search provide complementary information. On the one
hand, Lim et al.’s [17] work with IKEA CAD models
demonstrates the strength of using precise detailed 3D ob-
ject detections. However, the wealth of information gained
by performing a successful match is not used for the pur-
pose of extracting further information about the scene’s 3D
geometry. On the other hand, while the use of 3D con-
text in single view geometric scene understanding has been
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Figure 1: From a single image we (a) estimate room layout and 2D object locations to generate bounding cuboids. Cuboids
are converted to detailed 3D models from which a list of geometrically plausible layout hypothesis is created as shown in (b).
The likelihood of the generated hypothesis is ranked, and the final room prediction is made as shown in (c). The recovered
3D layout is detailed and geometrically and semantically viable.

demonstrated to be useful, as in [5], it does not provide 3D
information about objects beyond coarse cuboids or planar
segments’ based representation.

In a recent, non parametric approach to 3D scene under-
standing, Satkin et al. [22] proposes the use of 3D near-
est neighbours. Unlike previously discussed approaches,
Satkin et al. provide a tool to match entire configurations
of 3D scenes to images resulting in a detailed prediction of
its 3D geometry. The use of 3D models allows the gener-
ation of potentially infinite viewpoints so that image view-
points that are unfamiliar can still be successfully matched.
However, in the same vein, the 3DNN algorithm performs
poorly when the 2D scene features an unfamiliar geometric
layout. In addition, the algorithm exclusively uses geomet-
ric features to rank matches. This can cause geometrically
similar but semantically different scenes to be matched - for
example a 3D model of large table being matched to a scene
containing a boxy bed.

In this paper, we propose a data-driven approach that
harnesses appearance based models to provide detailed ge-
ometric and meaningful semantic 3D understanding of a
scene from a single image. The contributions of this paper
are two-fold.

Firstly, we demonstrate the use of detailed 3D models in
a non parametric and data driven approach at both identify-
ing as well as locating objects from a single image in 3D.
We therefore demonstrate the utility of 3D models beyond
the task of instance specific object detection to the larger
scale problem of detecting never-before-seen objects and
scene understanding in 3D. In addition we move beyond
the use of uninformative bounding cuboids to the intrinsi-
cally semantically meaningful, and geometrically informa-

tive representation of 3D models.
Secondly, we further the work of one of the most recent

and state of the art works in the area of scene understanding,
of Satkin et al. [22], by creating a flexible yet robust frame-
work for the incorporation of both semantic and appearance
cues for the purpose of achieving better holistic 3D scene
understanding.

2. Approach
The high level aim of our algorithm is to achieve single

view 3D scene understanding that is both geometrically and
semantically meaningful by combining 3D models with ap-
pearance based models.

The first step in this process is to estimate the layout of
a room - that is, the 3D position of its walls and floor along
with the camera parameters. Following this step we use an
object detector - specifically the Deformable Part Model de-
tector of [7], to get a 2D prior on the position and semantic
category of the objects in the scene. We use the estimated
room layout and camera parameters to transform the object
detector’s output of 2D bounding boxes to 3D cuboids.

The extrapolated 3D cuboids provide us with a prior on
the locations and dimensions of objects in the image. We
place 3D models of the predicted object category within
each bounding cuboid. For every placement of a 3D ob-
ject (which we call swapping) we calculate its geometric
likelihood - that is the similarity between the image and the
projected 3D model.

This geometric likelihood is evaluated using the method
of [22] where various geometrically meaningful image fea-
tures, such as surface normal and clutter estimates, are com-
bined in a learned linear model to output a single number as



a geometric similarity score. In other words, the geometric
similarity score is wTL, where each row of L is the out-
put of a geometrically meaningful image feature 1, and w is
a learned weight vector. This geometric similarity score is
used at various points in our algorithm.

At this stage in our algorithm we have attempted to eval-
uate and re-rank the likelihood of each object detection.
However in order to provide a holistic understanding of
the scene, we need to take in to account the interactions
between objects. We constrain the interactions between
objects to be geometrically realistic, i.e., objects are con-
strained to not intersect one another. Using this constraint
and a set of the swapped in 3D models we create a large set
of hypotheses that may provide a realistic understanding of
the scene. For a final prediction of the scene we train a sim-
ple linear regressor that attempts to maximize the accuracy
of the retained object detections.

In the following subsections we explain each stage of
our pipeline in detail. In Section 3 we evaluate the various
aspects of our algorithm.

2.1. Layout Estimation

An accurate room layout hypothesis would not only lead
to an accurate recovery of the intrinsic and extrinsic camera
parameters but would not violate the volumetric constraints
observed in the real world. In other words, a correct room
layout hypothesis would not only prevent accurate 3D de-
tections of objects from intersecting the walls or floor of
the scene but also assist in obtaining accurate object detec-
tions. This observation has been made in previous literature
[11, 19, 15] and used to optimize and correct room layout
predictions based on the position and volume of clutter.

Consistent with this observation, we use the method of
[22] to predict the layout of the room. The approach out-
lined by Satkin et al. not only incorporates geometric fea-
tures in its final prediction of the room layout, but uses de-
tailed 3D models ot re-rank the topN room layout hypothe-
sis of [11]. It is therefore more robust than methods that use
only the top ranking hypothesis of a room layout estimator
such as [8, 10, 23].

Note that while we use the layout estimation approach
of [22] and [11], it is possible to use any method that gives
an estimate of the room layout and camera parameters, for
example [16, 21, 27].

2.2. From Bounding Boxes to Cuboids

We use 2D object detections as the starting point for cre-
ating hypotheses of objects’ location, geometry and seman-
tic category in 3D. DPM harnesses crucial object specific
appearance information from large datasets and can pre-
dict objects accurately despite partial occlusion and across a

1As in [22] we use features predicting the presence of objects [18, 12,
11], surface normals [16, 9], edges, and oriented edges [3].

wide range of viewpoint and inter category appearance vari-
ation [7]. For example, a bed detection is indicative of what
a bed looks like in the image plane. Each bounding box and
semantic label provides us with a cue of where in space the
detected objects lie, and what their dimensions would be.

At the same time, by extrapolating 2D object detections
to three dimensions, we are able to better evaluate the geo-
metric likelihood of detected objects and prune away incor-
rect detections. For example, while it is possible for both
correct and incorrect detections to overlap in 2D, it is not
possible for correctly detected objects to occupy the same
volume in 3D. By extrapolating 2D detections to 3D, we
can use the geometric constraint of non-intersecting objects
to evaluate how correct a 2D object detection is.

In order to utilize the appearance and semantic infor-
mation each 2D detection provides us, as well as create a
framework that distinguishes between correct and incorrect
object detections, we transform each detection’s 2D bound-
ing box to a 3D cuboid. Even with known intrinsic and
extrinsic camera parameters, this problem is inherently ill-
posed. However, the semantic label and dimensions of each
detection can be used alongside recovered room layout and
camera parameters estimates to transform each 2D detec-
tion to a 3D cuboid. Due to its intelligent utilization of 3D
models for cuboid estimation, we use the method presented
in [5] to transform each 2D detection to a 3D cuboid. This
method hallucinates a cuboid of probable dimensions (cal-
culated by analysing the dimensions of IKEA models) that
projects to fit in to the 2D object detector’s bounding box.

While each generated cuboid respects the relative dimen-
sions commonly seen for its semantic category in the real
world, its depth from the camera has not yet been recovered.
To get an estimate of its 3D dimensions that is meaningful,
and to impose an absolute scale on all cuboids generated for
an image, we fix the depth of each cuboid to lie on the es-
timated floor plane. Following, we discard cuboids that are
hidden behind the walls of the 3D scene. In practice, these
pruned away detections correspond to object detections on
the walls and ceiling of the room. This can be seen in Figure
2, which shows examples of generated cuboids.

2.3. Object Swapping

By generating 3D cuboids we have extrapolated the se-
mantic and appearance information each 2D object detec-
tion provides us to three dimensions. However, just as many
object detections may be incorrect, many of the generated
cuboids would also be incorrect. These incorrect cuboids
may occupy an inappropriate volume (be too large or small
for the object it is meant to bound), be positioned in an area
that is free space, or be positioned in the right place with
the correct volume, but predict an incorrect category. In ad-
dition, generated cuboids’ location may be offset from the
position of the object it is meant to bound.



(a) Object detections and esti-
mated room layout

(b) The cuboid generated for a Bed
detection

(c) Discarded Table detection and
cuboid

Figure 2: 3D cuboids are generated from object detections’ bounding boxes. Cuboids lying behind walls are discarded

Figure 3: Four rotation transformations are applied to every swapped in model. Our dataset features many unique styles of
each category.

At the same time, the generated 3D cuboid provides two
cues that can be used for their further evaluation: the lo-
cation of the predicted object, and the dimensions of the
predicted object. However, it does not provide information
about the detailed 3D appearance of the object or its orien-
tation relative to the camera.

With these limitations in mind, the aim of the swapping
algorithm is two fold: first, to evaluate the geometric and
semantic likelihood of a cuboid being correct; second, to
transform each generated cuboid to a detailed 3D model.

Category Number
Bed 288
Couch 421
Table 566
Chair 321
Side table 125

Table 1: Number of Unique 3D Mod-
els Used for Object Swapping

In this pro-
cess we iterate
over a large
dataset of 3D
models of
the predicted
category of
each cuboid,
placing each 3D
model within
the cuboid and recording its geometric likelihood score
from [22]. This geometric score allows us to evaluate the
similarity of the original image and the 3D model across a
number of geometrically meaningful image features. For
example, clutter estimates of the 2D scene are compared
with a 2D clutter mask of the predicted 3D model. During
the swapping process, the geometric likelihood of each
object is evaluated independently of all other swapped in
3D models. In other words, the inserted model is the only

object present in the 3D room.

In order to use the information provided by the dimen-
sions of the cuboid, we set a threshold on the overlap be-
tween the dimensions of the cuboid and the swapped in 3D
model. We measure overlap by using the floor plan overlap
of [22]. In this the footprint of both the generated cuboid
and inserted 3D model on the visible floor are calculated
separately. The pixel-wise overlap between the two is then
used for evaluating overlap. We use an overlap of 40% in
all our experiments.

To account for inaccuracies in the location of 3D cuboid
as well as viewpoint variations, we allow for the flexibil-
ity of iterating over a number of transformations for each
swap. For example, for every swap we can place the object
so that the bottom left corner of the inserted objects bound-
ing box and the cuboid are in alignment. In practice, we
evaluate four transformations for every swapped in model:
four 900 rotations placing the swapped object in the centre
of the generated cuboid.

Finally, to account for inter class appearance variations
we iterate over a large dataset of 3D models that features ob-
jects of various styles. This dataset is obtained using models
from [2]. However, any source of 3D models can be used.
Table 1 outlines the number of unique 3D models used in
the swapping process for each of the 5 semantic categories,
while Figure 3 shows some styles of the bed category in
our dataset as well as an illustration of the transformations
applied during the swapping process.



2.4. Hypothesis generation and final scene predic-
tion

The Object Swapping algorithm evaluates the geometric
likelihood of each swap independently of all other swaps.
However, in order to provide an accurate holistic under-
standing of the scene in 3D it is necessary to harness the
information gained in the object swapping process for the
purpose of providing a prediction of object configurations
that are geometrically realistic (objects do not intersect one
another or the walls) and semantically correct (the 3D pre-
diction of a image containing a bed and side table should
feature these 3D objects).

In order to generate such a final prediction of the scene’s
configuration in 3D we generate a list of swapped object
combinations with the following constraints:

• No two objects on a list should intersect one another in
3D.

• No two objects on a list should have been swapped in
to the same cuboid.

The first condition ensures that the real world constraint
of solid objects not intersecting one another is respected.
The second constraint is imposed to respect the informa-
tion gained from 2D object detection - each object detection
translates to a maximum of one 3D object being associated
with it. The top N object swaps with the highest geometry
score per cuboid are used to generate the list of candidate
object configurations.

As explained in Section 2.3 the geometric likelihood of
each swapped in 3D model is evaluated with no other ob-
jects present in the room. Hence, while we have an indica-
tor of the geometric likelihood of each object in a list, we
do not yet have an indicator of the geometric likelihood of
the list as a whole. We therefore insert all 3D models on a
list at the position they were originally swapped in at in the
3D room, and obtain a score indicating this 3D scene’s ge-
ometric similarity to the image (again using the previously
discussed method of [22]). This is necessary to capture how
object relations in 3D affect the similarity of the 3D scene
configuration and the 2D image, for example, due to occlu-
sions.

At this point, for each image we have generated a number
of layout hypotheses or lists. Each one of these generated
lists contains a combination of 3D models that are geomet-
rically plausible but not necessarily correct. For example,
in the middle panel in Figure 1 both the top and bottom row
show lists with a correct 3D model(bed in the top row list,
and sidetable in the bottom row list) while the list shown
in bottom row also contains a 3D model that is inaccurate
(the table positioned in place of the bed). In fact, each gen-
erated list would feature some combination of correct and
incorrect 3D models and the list containing the most num-
ber of correct 3D models, and the least number of incorrect

3D models would be closest to the ground truth for that im-
age. In other words, the best layout hypotheses for an image
would be the list that is most accurate.

We therefore train a linear regressor capable of ranking
the accuracy of lists for each image. For each image in the
training data we calculate the accuracy of each of its lists by
using the following formula

List Accuracy = α1t+ α2f (1)

where t is the proportion of true positive 2D object detec-
tions retained for that training image, f is the proportion of
false positives discarded, and α1, α2 are weight terms set
according to the ratio of true and false positive 2D object
detections in the entire training dataset.

The features used for training this linear model - and
for prediction during test time - are the geometry similar-
ity score of the list, the semantic labels of the 3D models
contained in that list, and their corresponding object detec-
tions’ confidence scores.

This trained model is used to predict the accuracy of each
generated list for a test image. The list with the highest
predicted accuracy is taken to be our final 3D scene layout
prediction.

3. Evaluation

We now evaluate our system. Firstly, we evaluate its abil-
ity to recover the poses of objects. Performance at recovery
of geometry of the scene is then compared. Finally we move
on to compare its performance at the task of accurate delin-
eation of objects in the image plane. Both 3DNN [22], and
3DGP [5] are used as baselines.

All experiments are performed on the CMU 3D Anno-
tated Scene Database [1], which contains 526 images of
living rooms and bedrooms. We use the pre-trained DPM
detectors from [5] for five categories: Bed, Sofa, Chair,
Side Table and Table. These are trained on the PASCAL
VOC dataset [6] alongside a new furniture dataset [5]. For
experiments involving 3DGP, we report results using M1
marginalization from the paper [5], for which the best ge-
ometry recovery scores were reported.

For our own system, we use the top 1 model per cuboid
for the generation of layout hypotheses as described in Sec-
tion 2.4. Since the geometric features used for predicting
geometric similarity from [22] are also trained on the same
dataset using five-fold cross validation, we use Leave One
Out training for linear regression, and restrict the training
data for each model to be within the same fold. This is done
to prevent data contamination. To show the effect of us-
ing more confident DPM detections as input - we vary the
DPM confidence threshold and show results for two differ-
ent thresholds.
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Figure 4: Bed Orientation
Recovery
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Figure 5: Sofa Orientation
Recovery

3.1. Orientation

An advantage of using detailed 3D models rather than
cuboids is that it allows us to recover the orientation of ob-
jects - that is, knowing which way they are facing. This
allows us to recover the geometry of a 3D scene in a man-
ner that is more meaningful especially with respect human
affordance and interaction with the recovered 3D scene.

During the swapping process (Section 2.3), we evaluate
each 3D model’s geometric likelihood for four 90o rota-
tions with respect to the orthogonal walls of the room. Ori-
entation of ground truth objects is also labelled using one
of these four orientations with respect to the ground truth
walls. We show the recovery of orientation for the cate-
gories of bed and sofa.

Figure 4 shows the orientations recovered as a percent-
age of total correct detections for the bed category. Note
that the percentage of detections that are offset by 90o is
quite low, which indicates that even though our approach
might confuse the head and foot of a bed, the overall ge-
ometric alignment of the bed is in general quite good. A
similar trend is observed for the sofa category (Figure 5).

It is important to note that these results have been recov-
ered after using only the top 1 3D model for each cuboid,
and without any parametric constraints on object orienta-
tion or co-occurrences. In this sense our approach has great
potential for even better recovery of orientation. For ex-
ample, a simple heuristic for the recovery of object pose in
3D could be to restrict 3D models of beds to be swapped
so that the head of the bed is aligned with the wall of the
room. Similarly, 3D models of sofas can be restricted to
face towards detections of tables.

3.2. Geometry Recovery

We evaluate the ability of our system to accurately re-
cover the geometric layout of a scene using the metrics pre-
sented in [23, 22]. Specifically, we evaluate performance on
the following metrics:

• Surface Normals for All Pixels: The dot product be-
tween the predicted and ground truth surface normals
is evaluated at all pixels.

• Surface Normals for Object Pixels: The dot product

between the predicted and ground truth surface nor-
mals is evaluated at only those pixels where objects
exist in the ground truth.

• Surface Normals for Matched Objects: The dot
product between the predicted and ground truth sur-
face normals is evaluated at pixels where objects exist
in both the prediction and the ground truth. For all
other pixels the metric reports a 0. This is a stricter
metric for evaluation since objects must be predicted
in the correct location in order to score well.

• Floor Plan Overlap: The pixel wise overlap of the
foot print of the predicted and ground truth objects on
the visible floor is used.

Figure 6 shows that our system is able to out perform
3DGP across all these metrics. These results indicate that
the use of detailed models greatly assists in the accurate re-
covery of the 3D geometry of the room.

3.3. Object Detection in 2D

The use of 3D models for scene understanding has ad-
vantages that extend beyond accurate recovery of scene lay-
out in 3D. In particular, precise segmentation masks for de-
tected objects can be recovered from projection of the pre-
dicted 3D models.

Figure 7 shows how modeling 3D objects as detailed
models rather than cuboids is able to provide precise seg-
mentation masks for objects in the image plane. The pixel-
wise overlap detection threshold is steadily increased, and
at each threshold the percentage of detections made is
recorded. While 3DGP which uses bounding cuboids is
not able to sustain detections across higher thresholds, both
3DNN and our own approach that use 3D models are able to
sustain detections even at thresholds as high as 80 % over-
lap.

At the same time, by using the location, size and seman-
tic label of 2D object detections’ bounding boxes, our sys-
tem is able to detect more objects than 3DNN. This differ-
ence is particularly stark for the Sofa category where our
system is able to detect 8% more couches.

3.4. Qualitative Results

Figure 8 shows some qualitative results of our system.
Our approach is able to recover the precise geometry of ob-
jects in 3D, and is also semantically informative. In addi-
tion, the last row shows examples where despite an incorrect
room layout estimate, our system is able to use cues from
the image plane to precisely predict objects location, orien-
tation, and style in 3D.

In the supplementary material we show qualitative com-
parisons of our results against [22] and [5], as well as some
failure examples of our system.



Figure 8: Our system is able to recover the precise pose, geometry and semantic meaning for scenes

4. Conclusion

While the problem of single view scene understanding is
ill-posed, solving it can help answer virtually any question
about 3D world. It can allow us to recover free space and
the geometric and semantic layout of a scene.

In this paper we propose an approach to single view
scene understanding that utilizes 3D models in a data driven
framework. It successfully utilizes appearance and seman-
tic information, alongside geometrically meaningful fea-
tures and constraints, to provide a holistic understanding of
a scene in 3D. The recovered 3D scene respects real world
properties of objects - both geometric (objects may not in-
tersect one another) and scalar (all objects must lie on the
floor plane). The recovered scene is also detailed and se-
mantically meaningful. For a detected sofa our system can
answer questions about not only its pose, location, and di-
mensions in 3D - but also its style.

We have demonstrated the strength of utilizing 3D mod-
els beyond the scope of instance detection and in the realm
of scene understanding; we show that 3D model representa-
tion leads to better geometry recovery, object detection, and
precise image segmentation than the state of the art in scene
understanding that utilizes cuboid representation [5]. We
have further shown that the use of appearance and seman-
tic priors allows our system to perform significantly better
at precise object detection than methods that do not (3.3).
Furthermore, the system is simple and flexible. It can be
used as part of another system, or built on to achieve bet-
ter and more robust scene understanding. It is therefore of
value to the computer vision research community.
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Figure 7: Pixelwise overlap detection. By using 3D models instead of cuboids,
our system is able to sustain detections over higher thresholds.
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