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Abstract. This paper deals with automatic Single View Reconstruc-
tion (SVR) of multi-planar scenes characterized by a profusion of straight
lines and mutually orthogonal line-pairs. We provide a new shape-from-X
constraint based on this regularity of angles between line-pairs in man-
made scenes. First, we show how the presence of such regular angles can
be used for 2D rectification of an image of a plane. Further, we pro-
pose an automatic SVR method assuming there are enough orthogonal
line-pairs available on each plane. This angle regularity is only imposed
on physically intersecting line-pairs, making it a local constraint. Unlike
earlier literature, our approach does not make restrictive assumptions
about the orientation of the planes or the camera and works for both in-
door and outdoor scenes. Results are shown on challenging images which
would be difficult to reconstruct for existing automatic SVR algorithms.

1 Introduction

Single view reconstruction algorithms exploit different cues present in the pro-
jection of a scene to reconstruct its 3D structure. Examples of such cues include
shading, texture, shadow, focus, perspective and groupings of vanishing points.
These ‘Shape-from-X’ methods necessarily have to make assumptions about the
scene structure to constrain the 3D solution — in general, a 2D projection has
infinite 3D interpretations.

In this paper, we propose angle regularity as a new geometric constraint for
reconstruction of 3D structure from a single image. Shape from angle regularity
is based on the observation that if there are enough line-pairs that meet at
the same angle in 3D, most commonly 90◦, the distortion of this angle under
projection can be used as a constraint for estimation of 3D structure1. Angle
regularity is pervasive in architecture, which is characterized by a profusion of
straight lines that meet orthogonally. Hence, appropriate exploitation of angle
regularity can be a powerful cue for 3D reconstruction of man-made scenes.

The key idea in exploiting angle regularity is that the image of a 3D plane
can be rectified to a fronto-parallel view by searching for the homography that

1 For clarity of exposition, we will assume that the specified regular angle is 90◦ unless
stated otherwise. However, the framework would hold for any other regular angle,
for example 120◦ for the case of hexagonal tiling.
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Fig. 1. Shape from Angle Regularity: (a) Original image superimposed with line de-
tection. (b) Lines are extended to intersect, and two plane orientation hypotheses (red
and green) are generated through RANSAC. (c) Line-pairs form rectangular regions
and some overlapping rectangles have conflicting plane orientations. Three planar seg-
ments (red, green and blue) are identified after removing conflicts. (d) Articulation
lines between planes are shown in white. (e) Novel view of 3D reconstruction.

maximizes the number of orthogonal angles between projected line-pairs (see
Figure 2 for a conceptual illustration). This homography yields the normal vector
of the 3D plane. For scenes containing more than one 3D plane, our approach
has four main steps: 1) orthogonal line-pairs are assigned plane memberships by
iteratively computing plane orientation hypotheses through RANSAC (Figure 1
a, b); 2) rectangles are generated from orthogonal line-pairs, resulting in planar
segmentation of the image (Figure 1 c); 3) the adjacency of planar segments and
their shared, articulating lines are computed, using global geometric analysis of
all line-pairs and plane segments (Figure 1 d); and 4) the articulating lines and
the plane normals are used to solve for the full 3D structure (Figure 1 e).

We identify four major limitations in earlier literature that have been re-
moved by our approach. All the previous automatic SVR algorithms suffered
from at least one of these. Firstly, they assumed the 3D scene to be one of sev-
eral different ‘worlds’ – ‘Manhattan world’ [1], ‘Indoor world’ [1], and ‘Pop-up
world’ [2, 3]. Each of these worlds restricted the allowable orientation of planes
in 3D. In Manhattan world, planes were restricted to just three orientations; In-
door world further required that floor and roof planes were visible; and in Pop-up
world, the planes were required to be vertical to a common ground plane. Sec-
ondly, the boundaries of world planes themselves were assumed to be rectilinear,
spanned either by a single rectangle, or by a combination of axes-aligned rect-
angles. Thirdly, the camera was assumed to be in a typical orientation — at
a certain height and vertically upright, often requiring that the ground plane
and the ground-vertical boundary be visible. Finally, these approaches worked
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Fig. 2. 2D rectification for a single plane: The input image is taken from an unknown
angle. The rectified image is computed by searching over possible pan-tilt angles of the
plane, analogous to moving the camera over a hemisphere. The correct solution, given
by the fronto-parallel camera, maximizes orthogonal angles in the image space, and is
computed by a three-parameter optimization over camera pan, tilt and focal length.

in specific contexts, with different methods for indoor and outdoor scenarios,
and required explicit removal of clutter, greenery and sky.

In contrast, our method does not place any restriction on plane orientations.
In fact, by allowing planes to be oriented arbitrarily, the degrees of freedom of
potential reconstructions is increased drastically over earlier work. The extents
of each plane are also allowed to be more generic, where any line in the image
can be a portion of the boundary between two planes. We allow the camera to
be in any arbitrary orientation, and do not require visibility of the ground plane.
Moreover, our approach works for both indoor and outdoor scenes, and removes
clutter implicitly. While these cues can potentially be combined with texture or
shading information, we demonstrate a full end-to-end system for 3D reconstruc-
tion of multi-planar man-made scenes relying exclusively on geometric cues. The
limitation of the method is that it will work on man-made scenes which have
sufficient orthogonal line-pairs on each plane. We show results on challenging
and diverse images collected from the Internet, on some of which, none of the
earlier automatic approaches are likely to work. Our experiments demonstrate
that through shape from angle regularity, robust multi-planar segmentation, rec-
tification, and 3D reconstruction of man-made scenes is possible — even when
the camera view and plane orientation are arbitrary, line detection results are
imperfect, and natural objects, such as trees, occlude part of the image.

2 Related Work

SVR algorithms usually exploit either geometry or texture, or both. A classic
example of interactive single-view geometric modeling is ‘Tour Into the Picture’
by Horry et al. [4], which takes the strict assumption of a Manhattan World
with only one of the vanishing directions imaged on a finite vanishing point.
The underlying building block of most subsequent SVR papers, based purely
on geometric analysis of lines, has been the vanishing-point-based rectification
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technique proposed by Liebowitz et al. [5] and by Sturm and Maybank [6].
The idea is to first group lines according to their vanishing points and then use
two orthogonal vanishing points for rectification/reconstruction of a plane. They
used an interactive approach for marking plane boundaries as well as vanishing
points. Kang et al. [7] later extended Tour into the picture to work with two
finite vanishing points, that is, a vanishing line. Recently, Barinova et al. [8]
proposed an automatic method that removed the assumption of one infinite
vanishing direction in the outdoor scenario by correcting for vertical tilt before
reconstruction using a vanishing line. However, they assumed that the outdoor
scene consisted of one ground plane and one or more, connected, vertical planes
with rectangular boundaries. They also used a ground-building-sky segmentation
through learning proposed by Hoiem et al. [9].

The outdoor model used by Barinova et al. was earlier proposed by Hoiem
et al. in Automatic Photo Popup which combined their segmentation approach
using texture based learning with geometric constraints in order to compute
a popup model of the world [2]. Their vertical plane reconstruction was mainly
based on the always visible ground-vertical boundary line. Similar learning-based
idea was used in the indoor scenario by Delage et al. [10]. Saxena et al. learned
a Markov Random Field model over super-pixels [11] to estimate a rough depth
map of the scene in a continuous 2.5D mesh. A recent texture based approach
uses Transform Invariant Low Rank Textures (TILT) to compute a vertical fa-
cade model similar to Photo Popup but, importantly, does not require availability
of the ground plane [12].

Another interesting direction in geometric SVR has been an analysis of the
2D and 3D junctions between lines. The seminal work in this direction was
Kanade’s Origami World [13]. The recent indoor world work by Lee et al. [1]
successfully combines the junction analysis paradigm with an Indoor Manhat-
tan World assumption to recover the underlying structure of a cluttered indoor
scene automatically. In addition to restricting the scene to be Manhattan, they
further require that the only horizontal surfaces are floor and ceiling, and their
intersection with the vertical planes is visible.

Both the state-of-the-art algorithms in geometric SVR i.e. Lee et al. in indoor
scenario and Barinova et al. in the outdoor scenario depend on the two-step
approach which groups the dominant vanishing points globally and assumes them
to be mutually orthogonal in 3D [5]. Yu et al. showed that this global vanishing
points based grouping may be ambiguous even in Manhattan environment, and
proposed a local check called spatial coherence to protect against it [14]. They
further computed rectangles in the scene and grouped them according to the
order of their depth but failed to extend it to a full 3D reconstruction. In contrast,
we propose a new, and inherently local, cue which allows us to both segment and
reconstruct a general multi-planar structure in a bottom-up fashion. In addition
to being the first automatic method for planes in arbitrary orientations, ours is
the first automatic method that allows non-rectilinear plane boundaries and does
not restrict the camera orientation while being robust to significant amounts of
clutter.



Shape from Angle Regularity 5
 

       

       

       

    
 
 
 
 

   

 

 Fig. 3. Automatic rectification results on challenging images taken from the Internet.
EXIF data was available, hence two-parameter optimization was used. Note that even
when lines do not align to common vanishing points, as in the circular tiled patterns,
the algorithm works because it exploits orthogonalities locally.

3 2D Rectification

The image of a plane can be rectified to a fronto-parallel view if some line-pairs
on that plane meet orthogonally in 3D. The distortion of the angles between
these lines under perpective projection constrains the rectifying homography, as
illustrated conceptually in Figure 2. A homography induced by camera rotations
is given by [15]

H = KR
γ
ZR

β
Y R

α
XK
−1, (1)

where K is the 3× 3 matrix of intrinsic parameters, and RαX , RβY , and R
γ
Z denote

rotations about the X, Y , and Z axes of the camera by α, β, and γ respectively2.
We assume square pixels and the image origin at camera’s principal point, which
reduces K to diag [f, f, 1], containing a single focal length parameter, f . Under
these assumptions, KRγZ simplifies to a similarity transform, which has no effect
on angles and can therefore be ignored. Hence, the search space for the rectifying
homography is reduced to just three parameters, α, β, and f . For most of our
experiments, the focal length is known from the camera’s EXIF data, leaving only
two parameters, α and β — the rectifying homography is now given by H (α, β) =

R
β
Y R

α
XK
−1. We have empirically found that these simplifying assumptions do not

qualitatively degrade results3.

To search for the rectifying homography Ĥ, consider two lines in the image li
and lj which were orthogonal in 3D world, but their mutual angle has been dis-
torted by perspective projection. An arbitrary homography, H, transforms these
lines to H−>li and H−>lj respectively and the correct rectifying homography
should make them orthogonal. Let ṽi and ṽj be the first two elements of the

2 We follow the mathematical notation of Hartley and Zisserman [15]; x is a scalar;
x and X are homogeneous vectors in P2 and P3 respectively; x̃ and X̃ are their
inhomogeneous versions; and X denotes a matrix.

3 If focal length is unknown, the two vanishing points of a plane must be at finite
location; if any of them is at infinity, the relative scale of the two dimensions will
be unconstrained for the case when lines are in just two dominant directions. This
ambiguity does not arise when focal length is known.
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vectors H−>li and H−>lj normalized to unit norm respectively; then they repre-
sent unit vectors orthogonal to these lines in 2D. Hence, the cost of the rectifying
homography, Ĥ, can be given by ||ṽ>i ṽj ||2. A homography that minimizes this
cost over all line-pairs is the rectifying homography, which restores angles dis-
torted by perspective projection to their original values. This cost function can
be written as

C (H (α, β)) =
∑
i,j

||ṽ>i ṽj ||2. (2)

Since we do not know beforehand which line-pairs are indeed orthogonal,
we use RANSAC [16], by assuming any two line-pairs to perpendicular, and
using them to compute the rectifying homography4. The inliers are computed
by counting how many other line-pairs have become orthogonal in the rectified
image. Line segments are detected in the original image using the implementation
of von Gioi et al. [17], with an additional gap-filling step. Each input segment is
extended till it intersects another line segment, and only such intersecting pairs
are used for optimization.

It is useful to observe that this optimization could have been formulated for
any known angle constraint between the lines, rather than for just 90◦ angles.
In that case, the cost function in Equation 2 may be modified to

C (H (α, β)) =
∑
i,j

(||ṽ>i ṽj ||2 − cos2 θ̂)2, (3)

where θ̂ is the known angle expected to occur frequently on the plane.
Results of automatic rectification for real images taken from the Internet are

shown in Figure 3. Note that for the circular tiling patterns, vanishing point
based approaches [5] will not work, because there is no dominant alignment
of parallel lines. However, our method uses local orthogonalities and does not
assume alignment between line-pairs; hence the orthogonal angles of the tiles,
even though arranged in a circular orientation, are enough to constrain the
solution. EXIF data was available for these images, and hence optimization was
reduced to two parameters. The rectification shown in Figure 2 was computed
without EXIF data, through a three-parameter search over α, β and f .

4 Computation of Multi-Planar Structure

The rectification process discussed above can be applied to a multi-planar scene,
if each plane is segmented independently. The segmentation problem itself will
be discussed in the next section; here we assume that it is available.

To compute the normal of a plane in 3D, let Ri be the 3 × 3 rotation the
camera has to undergo in order to become fronto-parallel to the i-th plane. This
rotation is available through rectification. The optical axis, Z, of the rectified

4 If focal length is not known, minimum three line-pairs are needed to uniquely con-
strain the rectifying homography.
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Fig. 4. Reconstruction with manual segmentation: The curved surfaces were treated
as piece-wise planar, and their planar segments were identified. The right-most figure
shows Ames Room illusion, where our reconstruction mimics human perception.

camera is perpendicular to the 3D plane (Figure 2). Hence, the normal vector,
ñi, of the plane in the original camera frame is computed by applying the inverse
of the rectifying rotation to the Z-axis:

ñi = R>i [0, 0, 1]
>
. (4)

Once the plane normal is known, the only remaining parameter is its depth.
Since the structure can be reconstructed only up to an arbitrary global scale, we
need to recover just the relative depths of planes, that is, the ratios of their depths
should be preserved. The relative depths of a pair of planes can be computed
if we have one or more common points between them. Our solution is similar
to the interactive approach used by Sturm and Maybank [6], which was based
on finding plane normals through vanishing points, and then solving for the
common points and relative depths together. Though we only compute relative
depths, and use a different constraint, our linear system turns out to be similar.

Let π1 and π2 be two planes with normal vectors ñ1 and ñ2, respectively; i.e.
πj = [ ñ>j , dj ]>, where dj represents the depth of the plane. Assume that the
two planes share a common point x. Given that the camera is in the canonical
view and the camera intrinsic matrix K is known, we may back-project the point
into a 3D ray X̃ = K−1x. The 3D point X imaged as x may lie anywhere on the
ray αX̃ for some positive α i.e. X = [αX̃>, 1]>. In our particular case, however,
this ray must intersect both the planes π1 and π2 at the same 3D point, therefore

π>1

[
αX̃
1

]
= π>2

[
αX̃
1

]
= 0. (5)

Equating the two α values and rearranging yields[
ñ>2 X̃ , −ñ>1 X̃

] [d1
d2

]
= 0. (6)

Generalizing to multiple planes and allowing for the possibility of more than one
articulating point for each plane-pair, the set of constraints on relative depths
can be written as a linear system,

Ad = 0, (7)

where d =
[
d1, . . . , dp

]>
contains the relative depths of p planes and every row

of A contains one common point constraint between the j-th and k-th planes
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such that ai,j = ñ>k X̃i, ai,k = −ñ>j X̃i and rest of the elements in the i-th row
are zeros.

The vector of relative depths, d, is the right null vector of A and is com-
puted through SVD. It is recovered up to an arbitrary scale because Equation
7 represents a homogeneous system. In order to fairly weigh the constraints,
all back-projection rays are normalized to unit norm. Note that relative depths
of planes can only be computed correctly for a set of planes if they are con-
nected, i.e. they are either directly adjacent through some common points or by
association through intermediate adjacent planes.

The linear solution discussed above may contain inaccuracies due to error in
plane normals or noise in the observed common points. We refine the solution
by using it as an initial guess in a non-linear optimization over all planes πk
and focal length f , which minimizes both the orthogonality cost for line-pairs
Ck (Equation 2) on each plane as well as error in observed common points.
The error Dl,m in common points is measured by projecting the articulation
line and computing the sum of its normal distances from all common points for
adjacent planes πl and πm. The articulation lines are parameterized by the join
of their planes, so that they are geometrically consistent with the solution of
plane parameters. The objective function to be minimized is given by

E(f,π1, ...,πp) =
∑

∀ adjacent planes (πl,πm)

Dl,m +
∑

∀ planes πk

Ck. (8)

Figure 4 shows reconstruction of structure from single images when segmen-
tation is provided. All other steps are performed automatically with no specific
parameter tuning for different test cases.

5 Multi-Planar Segmentation and Single-View
Reconstruction

Now we discuss the complete algorithm for shape from angle regularity, including
a strategy to segment the image into its planar components based on geometric
cues only. Our full algorithm can be organized into four main steps, which are
elaborated below. Line segments and their adjacency relationships are computed
the same way as in Section 3.

5.1 Plane Orientations

The method to find plane orientation from image of a plane is described in
Section 3. For multi-planar scenes, we first apply RANSAC to find the adja-
cent line-pairs belonging to the most dominant plane orientation in the image,
then remove these RANSAC inliers from the input. The process of RANSAC
on remaining line-pair population and inlier removal is repeated until a sizable
consensus set cannot be found anymore. This process detects arbitrary plane ori-
entations since no global constraints on plane or line orientations are employed.
Different but parallel planes are grouped together at this stage.
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Fig. 5. Rectangles formed by line intersections: Detected line segments (solid black)
and their supporting lines (dashed gray) generate the rectangles (colored boxes). Five
different cases of intersection are illustrated from left to right, resulting in zero, one,
two, two and four rectangles respectively. Note that the rectangles are in rectified view,
and will perspectively distort according to the plane orientation in the original image.

Note, however, that one line pair may be rectified by more than one plane
orientations and may have multiple classifications. A common example of this
ambiguity is demonstrated in Figure 1b where the imaged ground-vertical bound-
ary becomes almost collinear and participates in line-pairs rectified by both plane
orientations. Here line-pairs are marked by circles at their point of intersection
and some line-pairs near the bottom are marked in both orientation groups
indicating dual grouping. In order to allow multiple labels for every line-pair,
we compute orientation inliers again for each pre-computed plane orientation
hypothesis but without removing any line-pairs from consideration as done in
RANSAC. At the end of this step, most line-pairs in the image are given one or
more labels, depending on the plane normal that they support. Only the line-
pairs that have at least one label are considered during the planar segmentation
step.

5.2 Planar Segmentation

Line-pairs have been assigned plane orientation labels in the previous step but
the extents of planes are also needed for 3D reconstruction. We take a bottom-up
approach for detecting planar segments in the image. First, the labeled line-pairs
are used to generate oriented planar regions which serve as the basic unit for
bottom-up segmentation. These region hypotheses are verified for correctness
and grouped later on to form planar segments.

An orthogonal line-pair based on detected line segments may intersect in
five different ways as illustrated in Figure 5. For each case, rectangular regions
are created while making sure that the intersection point of the line-pair lies on
at least one physical line segment, and the rectangle is supported by both the
line segments. Note that these rectangles exist in the rectified view, but appear
perspectively distorted to the ‘correct’ orientation in the original image. If a
line-pair has more than one orientation labels, rectangles are computed for each
of the orientations so that every perspectively distorted rectangle has correct
extents in the image and has a unique orientation label.

Previous literature on multi-planar segmentation uses pixels, super-pixels or
lines as basic unit for bottom-up segmentation. The use of rectangles, rather
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than any other method of plane segmentation, is key to our segmentation algo-
rithm. Given the orthogonality constraint our line-pairs must follow, rectangles
arise naturally and allow us to compute region hypotheses. Moreover, since two
sides of a rectangle are supported by its generating line-pair, the opposite sides
form useful ‘hallucinated’ lines, which are often line segments that have not
been identified by the line detector, or are occluded by image clutter. Lastly, fre-
quent overlap between rectangles is useful in a consensus based region grouping
approach as explained below.

Since each rectangle supports a plane orientation, some overlapping rectan-
gles have conflicting orientation labels. We remove these conflicts by dropping
some rectangles. The idea is to discard as few rectangles as possible, so we it-
eratively remove the most ’troublesome’ rectangles in two steps. Step 1: since
each rectangle contains many line-pairs, some of them have an orientation label
different from the label assigned to the rectangle. We first compute the ‘inlier
percentage’ for each rectangle, i.e. the number of line-pairs having the same plane
orientation divided by the total number of line-pairs inside that rectangle. Here,
a line-pair is considered inside a rectangle if the intersection point of the line-pair
lies in the rectangle. This step yields a normalized measure of correctness of a
rectangle.

Step 2: For each rectangle, we define its ’conflict score’ as the sum of the
inlier percentages of conflicting rectangles it overlaps with. High conflict score
for a rectangle means that it conflicts with many good rectangles and should
be removed. If we remove a rectangle then the conflict scores of the conflicting
rectangles will also change. We iteratively remove the rectangle with the highest
conflict score and then update the conflict scores for all the rectangles. This
greedy conflict removal process is repeated until there are no more conflicts left.
After conflict removal, overlapping rectangles must belong to the same plane
orientation label, and each pixel in the image gets at most one label. Some
pixels may not be labeled at all if they lie in a region away from any rectified
line-pair, such as pixels in the sky. This implicitly results in removal of clutter
and sky regions.

The planar segmentation process is illustrated in Figure 1. Lines are detected
on the original image (Figure 1a) and two plane orientation hypotheses are gen-
erated through RANSAC. The inlier line-pairs of each orientation are shown in
Figure 1b marked by circles at their intersection points. The rectangles induced
by these inliers result in the distorted rectangles shown in Figure 1c (left). The
color of each rectangle indicates its plane orientation label. Note that signifi-
cant overlaps exist between rectangles of different colors before conflict removal.
However, after conflict removal, the remaining overlapping rectangles do not have
different colors as Figure 1c (middle) demonstrates. Also, parallel but different
planes still have the same labels as shown by two red planes. In order to separate
physical planar regions, we make sure that only overlapping rectangles have the
same orientation by using graph based connected components algorithm. This
results in physically contiguous regions getting unique labels as shown in Figure
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1c on the right. These groups of rectangles are treated as planar segments in the
subsequent steps of the algorithm.

5.3 Articulation Lines

At this stage we have planar segments containing line segments and their plane
normals. In order to do 3D reconstruction we must ascertain whether a pair of
planar segments is connected to each other and if yes, then identify the articula-
tion line between the pair. Although knowing one image point common to both
planes is enough to constrain their relative depths but we identify the articula-
tion lines because two planes always intersect at a line in 3D. We assume that
the articulation line has either been detected or hallucinated in our rectangle
generation process. This assumption significantly reduces the search space for
articulations while allowing for a general polygonal plane boundary — a signifi-
cantly relaxed model for plane boundaries as compared to earlier literature.

For a selected pair of planes and all the candidate line segments, detected
or hallucinated, we first filter out the lines which are geometrically inconsistent
with the normals of these two planes. We compute the plane relative depths
using one of the end-points of a given line segment. The 3D intersection line of
these two planes is computed and projected in the image. If the line segment
is consistent with the plane normals, its second end-point must also lie on the
projected articulation line. Therefore, we filter out the line segments which make
an angle larger than 5◦ with the projected articulation line. It results in a set of
geometrically plausible articulation lines for the pair of planes.

In order to identify the best articulation line from a set of plausible lines, we
apply two heuristics: 1) a good line should separate the the two plane segments
well and, 2) should not be too far away from either segment. After picking a
few best separating lines, we compute the minimum distance to both the plane
segments and pick the line with the least distance as the best articulating line for
this pair of planes. This process is performed for all the plane-pairs to identify
the best possible line for every plane-pair.

Some plane-pairs might not have any plausible articulation lines because
they are not adjacent while others may be assigned incorrect lines accidentally
through this process. It is reasonable to assume that the correct articulating line
will not be too far away from either of the segments in a physically adjacent
pair. We use this observation in two ways. First, we remove plane articulations
from consideration if it is too far away from either of the corresponding plane
segments. Second, we form a plane adjacency graph where two nodes are con-
nected if they have a valid articulating line and the weight of the edge is the
maximum distance of that articulating line from the plane segments. We find
the Minimum Spanning Tree (MST) of the largest connected component in this
graph which results in a minimal set of best constraints. We throw away the
smaller connected components that are not connected to this tree because the
relative depth of two disconnected plane sets cannot be reconstructed by our
algorithm in Section 4.
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Fig. 6. More results of single-view reconstruction using angle regularity. The columns
2 and 5 show detected lines and the colors indicate segmentation labels. The columns
3 and 6 show 3D structure texture-mapped from a novel view-point.

5.4 Structure Recovery and Refinement of Plane Extents

Given that articulation lines and plane normals are known, we can now compute
the 3D structure through the formulation in Section 4. After reconstruction, as a
final step, we determine the extents of the planes by considering the union of all
rectangles belonging to that plane and the corresponding articulation line. This
is because the articulation line may not lie within the connected component of
the rectangles supporting that plane.

6 Results

While results for 2D rectification, reconstruction and segmentation have been
illustrated earlier, here we show the results of the overall automatic system. No
specific parameter tuning was performed, other than the scale parameter that is
required for good line detection by the Line Segment Detector (LSD) code [17].
Focal length was provided through the EXIF data for all photographs but it was
automatically computed for the sketch in Figure 7.
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Fig. 7. Illustrative results for Shape from Angle Regularity on challenging images: Note
that none of these images would be reconstructed by Pop-up or Manhattan models.

The results in Figure 6 show several diverse but typical scenarios including
indoor, outdoor, Manhattan, non-Manhattan and Popup scenes as well as scenes
with significant clutter and sky regions. These results demonstrate the general
applicability of our approach for everyday man-made scenes. Some of them would
not have been reconstructed by existing approaches because of their restrictive
world assumptions, because of the ground plane not being visible, planes not
meeting at orthogonal angles, and atypical camera orientation.

Figure 7 shows segmentation and reconstruction on very challenging images.
These images do not follow the geometric models of any of the state-of-the-
art automatic SVR algorithms. The first image shows a very awkward structure
whose details have been correctly segmented and reconstructed by our approach.
The second example defies vertical-walls assumption required by earlier SVR al-
gorithms, and also contains contains sky and clutter which has been correctly
filtered out. The third example is that of a line sketch. In this case, three param-
eter search was carried out to recover focal length, and correct structure recovery
is illustrated.

Typical failure cases are illustrated in Figure 8. Our algorithm will not gen-
erate the correct depth of two planes that do not have an intermediate set of
connecting plane visible between them. Other failure reasons include not finding
enough line-pair constraints on a plane, and incorrect grouping of constraints
between planes.

The results shown here are for illustrative purposes. More examples, dataset
and code is available on our project page: http://cvlab.lums.edu.pk/SfAR.
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