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Abstract In this paper, we describe a data-driven approach
to leverage repositories of 3D models for scene understand-
ing. Our ability to relate what we see in an image to a
large collection of 3D models allows us to transfer informa-
tion from these models, creating a rich understanding of the
scene. We develop a framework for auto-calibrating a cam-
era, rendering 3D models from the viewpoint an image was
taken, and computing a similarity measure between each 3D
model and an input image. We demonstrate this data-driven
approach in the context of geometry estimation and show the
ability to find the identities, poses and styles of objects in a
scene. The true benefit of 3DNN compared to a traditional
2D nearest-neighbor approach is that by generalizing across
viewpoints, we free ourselves from the need to have training
examples captured from all possible viewpoints. Thus, we
are able to achieve comparable results using orders of mag-
nitude less data, and recognize objects from never-before-
seen viewpoints. In this work, we describe the 3DNN algo-
rithm and rigorously evaluate its performance for the tasks
of geometry estimation and object detection/segmentation,
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as well as two novel applications: affordance estimation and
photorealistic object insertion.

Keywords Computer vision - Machine learning - Scene
understanding - Geometry estimation - 3D data

1 Introduction

This work explores the intersection of geometric reasoning
and machine learning for scene understanding. Our objec-
tive is to produce a rich representation of the world from a
single image by relating what we see in the image with vast
repositories of 3D models, as shown in Fig. 1. By matching
and aligning an image with 3D data, we can produce detailed
reconstructions of scenes and transfer rich information from
the models to answer a wide variety of queries. Our work
builds upon recent advances in data-driven scene matching
and single-view geometry estimation, which we now sum-
marize.

1.1 Data-Driven Approaches in Computer Vision

Over the past decade, researchers have demonstrated the
effectiveness of data-driven approaches for complex com-
puter vision tasks. Large datasets such as Torralba et al.
(2008)’s 80 Million Tiny Images and Deng et al. (2009)’s
ImageNet have proven to be invaluable sources of informa-
tion for tasks like scene recognition and object classifica-
tion. Simple nearest-neighbor approaches for matching an
input image (or patches of an image) with a large corpus of
annotated images enables the “transfer” of information from
one image to another. These non-parametric approaches have
been shown to achieve amazing performance for a wide vari-
ety of complex computer vision and graphics tasks ranging
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(a) Input image (b) Predicted surface normals

R %

(d) Predicted object labels

(¢) Predicted depth map

Fig. 1 From a single image, we estimate detailed scene geometry and
object labels

from semantic labelling (Sing and KoSecka 2013; Tighe and
Lazebnik 2010) and scene categorization (Oliva and Torralba
2001), to motion synthesis (Liu et al. 2008) and even image
localization (Hays and Efros 2008).

Recently, large online repositories of 3D data such
as Trimble 3D Warehouse (Trimble Inc. 2012) (formerly
Google 3D Warehouse) have emerged. These resources, as
well as the advent of low-cost depth cameras such as the
Kinect (Microsoft Corporation 2010), have sparked inter-
est in geometric data-driven algorithms. At the same time,
researchers have (re-)started investigating the feasibility of
recovering geometric information, for example, the layout
of a scene (Bao et al. 2010; Hoiem et al. 2007; Saxena et
al. 2009). The success of data-driven techniques for tasks
based on appearance features, for example, interpreting an
input image by retrieving similar scenes (Hays and Efros
2007; Torralba et al. 2008; Liu et al. 2008), suggests that
similar techniques based on geometric data could be equally
effective for 3D scene interpretation tasks. In fact, the moti-
vation for data-driven techniques is the same for 3D mod-
els as for images: Real-world environments are not random;
the sizes, shapes, orientations, locations and co-location of
objects are constrained in complicated ways that can be rep-
resented given enough data. In principle, estimating 3D scene
structure from data would help constrain bottom-up vision
processes. For example, in Fig. 1, one nightstand is fully visi-
ble; however, the second nightstand is almost fully occluded.
Although a bottom-up detector would likely fail to identify
the second nightstand since only a few pixels are visible,
our method of finding the best matching 3D model is able
to detect these types of occluded objects. This is not a triv-
ial extension of the image-based techniques. Generalizing
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data-driven ideas raises new fundamental technical questions
never addressed before in this context: What features should
be used to compare input images and 3D models? Given these
features, what mechanism should be used to rank the most
similar 3D models to the input scene? Even assuming that
this ranking is correct, how can we transfer information from
the 3D models to the input image?

To address these questions, we develop a set of features
that can be used to compare an input image with a 3D model
and design a mechanism for finding the best matching 3D
scene using support vector ranking. We show the feasibility
of these techniques for transferring the geometry of objects
in indoor scenes from 3D models to an input image.

The graphics community has begun harvesting data from
online repositories such as 3D Warehouse in an effort to bet-
ter understand and model how objects are typically arranged
in homes (Fisher and Hanrahan 2010; Fisher et al. 2011).
Additionally, the vision community has begun utilizing this
data to learn about the sizes, shapes and affordances of
objects (Grabner et al. 2011; Zhao and Zhu 2013). There
has also been work using this data for 3D to 3D match-
ing with laser scans to aid in classification (Lai and Fox
2009). However, our work is one of the first to combine
this geometric prior with image features in a framework
capable of producing detailed 3D models from an image.
Of course, this is not entirely new, the idea of relating
3D models to 2D projections was a foundation of earlier
vision approaches (Brooks 1981; Lowe 1987; Grimson et
al. 1990). In the area of outdoor scene understanding, prior
work (Baboud et al. 2011; Baatz et al. 2012; Ramalingam et
al. 2010) investigated matching images with models of ter-
rain or cities. This body of work aims to localize images,
relying mostly on matching features such as skylines which
are specific to these scenarios, and do not transfer to other
environments. The major difference here is our use of vast
repositories of 3D data, which require novel vision and learn-
ing approaches.

This work is an important first step towards 3D data-
driven techniques, which will contribute to addressing two
major problems in image understanding. First, as most geo-
metric scene understanding systems rely implicitly on sift-
ing through a collection of hypotheses (iterative refine-
ment (Hoiem etal. 2008), sampling (Pero et al. 2011), explicit
search (Gupta et al. 2010), structured prediction (Hedau et
al. 2009; Lee et al. 2010), matching and ranking mecha-
nisms such as the ones we propose provide a data-driven
way to generate multiple hypotheses which can be used
as seeds for further processing. Second, 3D data offers
potentially richer information for transfer. In this paper,
we show that using 3D information for scene understand-
ing enables us predict not only object type and loca-
tion, but also viewpoint and even occlusions from other
objects.
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1.2 Single-View Geometry Estimation

For decades, vision researchers have strived to create high-
quality 3D models of indoor scenes. Traditional approaches
rely on having images taken from multiple viewpoints in
order to recover the depth of each pixel using triangula-
tion (Longuet-Higgins 1981). However, in recent years, the
vision community has begun to focus on recovering the
geometry of a scene from a single image (Hoiem et al. 2007,
Lee et al. 2009; Saxena et al. 2009).

This is an inherently ill-posed problem—there exists an
infinite number of 3D models which project to the same
image. Despite the inherent mathematical ambiguity, humans
excel at this task. When shown an image of an environment,
we are not overwhelmed with an infinite number possible 3D
models. On the contrary, we can quickly associate objects in
images with objects we have seen before, to reason about the
structure of the scene.

We are capable of this type of reasoning because the envi-
ronments we live in are not completely random. The sizes,
shapes, orientations, locations and co-location of objects are
all dictated by the activities which the environment was
designed to afford. For example, there are manufacturing
standards for sizes of beds, couches, tables, etc. Moreover,
when we place these objects in our homes, we tend to
place them in specific locations relative to each other (e.g.,
nightstands adjacent to beds, coffee tables ~2ft in front of
couches). When confronted with the ill-posed problem of
recovering the geometry of scene from a single image, we
must exploit this statistical prior and only consider 3D mod-
els which contain reasonable objects, in reasonable arrange-
ments.

Recently, tremendous progress has been made towards
the task of estimating the geometry of a scene from a sin-
gle image. The groundbreaking work of Hoiem et al. (2007)
and Saxena et al. (2009), showed that machine learning can
be be used to tackle this tremendously challenging task.
The authors of these papers demonstrate that classifiers can
be trained to predict the orientation and identity of image
patches from outdoor scenes, which can be used to infer the
3D structure of the environment.

For indoor imagery, Yu et al. (2008) and Lee et al. (2009)
showed that imposing a Manhattan-world constraint enables
the robust detection of vanishing points allowing cameras to
be autocalibrated from a single image. The authors use their
model to detect planes and infer depth ordering to estimate
the locations of the walls, floors and ceilings.

A fundamental problem when estimating the locations of
walls in an indoor environment is clutter. Quite frequently,
furniture or other objects will occlude the boundary between
walls and where the walls meet the floor. Hedau et al. (2009)
train a classifier to predict which pixels are the result of clut-
ter, and which pixels correspond to the walls and floor of

(a) Input image (b) 2D bounding boxes

(¢) 3D bounding cuboids

(d) Detailed 3D geometry

Fig. 2 Comparison of scene representations. In order of increasing
geometric detail: traditional 2D bounding boxes (b), 3D bounding
cuboids (c), our detailed 3D scene geometry (d)

a room. Wang et al. (2010) also predict which pixels cor-
respond to occluding objects; however, their technique uses
latent variables and avoids the need for labeled training data.
Both of these approaches show that by identifying the loca-
tions of clutter in a scene, the room layout can be more accu-
rately estimated.

More recently, researchers have begun analyzing the
detected clutter in a scene and trying to model it with 3D
bounding cuboids. This representation, depicted in Fig. 2¢
offers more information than traditional 2D bounding boxes
(Fig. 2b), which only localize objects in the image plane.
Cuboids can be used to reason about a scene in ways which
cannot be inferred from 2D bounding boxes, such as estimat-
ing the freespace of an environment or analyzing where the
supporting surfaces of objects are. Lee et al. (2010) combine
the geometric context used in Hedau et al. (2009) with an ori-
entation map to fit a parametric model to objects in a room
with the goal of improving the estimates of wall locations.
Pero et al. (2011) use 3D bounding cuboids fit to objects as
part of a Markov Chain Monte Carlo framework to optimize
over both the locations of the walls as well as camera pitch,
roll and focal length. Both of these works show that modeling
the clutter in a room improves the accuracy of room layout
estimation; however, the authors do not evaluate how well
their cuboids match the geometry of the objects in the scene.

In Hedau et al. (2010), the authors build upon their previ-
ous work by incorporating a cuboid detector capable of accu-
rately detecting beds. Their algorithm searches for gradients
in images which have been rectified to estimated Manhattan-
world axes, and tries to align cuboids of fixed sizes (cor-
responding to common beds). Unlike previous work which
aims only to recover the locations of walls and floors in
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images, this work strives to detect and align objects in scenes
and evaluates their results using typical object detection met-
rics.

Rather than representing objects and freespace with
coarsely voxelized occupancy grids or bounding cuboids,
we aim to produce high-quality detailed polygonal meshes of
objects, as shown in Fig. 2d. We build upon and use the room
layout estimates of Hedau et al. (2009), and mine through a
database of 3D models to discover the identity, locations and
orientations of objects from a single image. New work such
as Choi et al. (2013), Hedau et al. (2012), Pero et al. (2012),
Zhao and Zhu (2013) also aims to recover freespace by local-
izing cuboids representing object categories and sizes using
parametric models as their prior. In contrast, we recover more
detailed object geometries, similar to the recent approach pre-
sented in Lim et al. (2013), and we use non-parametric priors
that can capture complex interactions between objects.

For each object in a scene, we aim to not only recover
its exact location, orientation and dimensions in 3D (which
can be modeled with cuboids), but also a detailed polygonal
model of the object. In addition, we aim to recover the intrin-
sic (focal length and principal point) and extrinsic (position
and rotation relative to corner of the room) parameters of the
camera which captured the image. In this work, we show that
recovering the detailed geometry of a scene and the corre-
sponding camera parameters offers a complete representation
of the world, which can be used to answer a wide variety of
questions. For example, using the estimated camera parame-
teres, we can project the polygons of each object onto the
image plane to produce a segmentation mask (Fig. 1d). We
can compute the distance from the camera to each object to
produce depth maps and reason about occlusions and depth
ordering (Fig. 1c).

Although there exist many sensors which are designed to
capture 2.5D representations of the world, such as laser scan-
ners and RGBD cameras, these modalities capture only what
is visible from a single viewpoint. On the contrary, because
we have a full 3D representation of the scene, we can reason
about portions of the environment which are not visible to
the camera. For example, in the bedroom scene in Fig. 1,
only a small portion of the nightstand in the corner of the
room is visible, and the strip of floor between the bed and the
wall is fully occluded. A 2.5D sensor will have no knowledge
of these portions of the environment; however, our full 3D
representation of the scene includes the geometry of these
regions. This information cannot be measured directly, and
must be inferred using prior knowledge of the world.

This brief summary of previous work shows how vibrant
this research area is and how much progress has been made
in a short time. The work presented here builds upon the
authors’ prior work (Satkin and Hebert 2013; Satkin et al.
2012) with the addition and analysis of new features for
matching images to 3D models, and a geometry refinement
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stage which swaps hypothesized 3D objects with others from
a library to produce instance-level matches. We also demon-
strate new applications of 3DNN: object recognition, affor-
dance estimation and geometry-aware object insertion. The
data-driven techniques that we propose here should not be
viewed as a substitute to any of the above approaches. Per-
haps the most exciting aspect of our approach is that it
can be used to augment any of these scene interpretation
approaches: upstream, by providing a data-driven way to
generate hypotheses; and downstream by providing richer
mechanisms for information transfer. We show this by build-
ing upon the work of Hedau et al. (2009) and by demonstrat-
ing how prior 3D models can be integrated with this existing
approach for room layout estimation to help discover the
identity, locations and orientations of objects from a single
image.

2 Scene Understanding via 3D Model Matching

We now describe our framework for comparing 3D models to
monocular images. Naturally, we cannot compare 3D models
directly to a 2D image. Thus, we first estimate the intrinsic
and extrinsic parameters of the camera and use this informa-
tion to render each of the 3D models from the same view as
the image was taken from. We then compute similarity fea-
tures between the models and the input image. Lastly, each of
the 3D models is ranked based on how similar its rendering
is to the input image using a learned feature weighting. See
Fig. 3 for an overview of this process.

2.1 Autocalibration and Room Layout Estimation

Our algorithm for recovering the geometry of a scene is an
analysis via synthesis approach. We render 3D models from
the viewpoint from which an image was captured and com-
pare these renderings to the input image. This requires we
first recover the parameters of the camera used to capture the
image via auto-calibration and room layout estimation.

We begin auto-calibrating the camera by estimating van-
ishing points using the approach of Lee et al. (2009). The
vanishing points are also used to estimate the orientation of
the camera with respect to the three Manhattan-world axes
in our scene. Next, we run the pre-trained room layout esti-
mation algorithm of Hedau et al. (2009) to determine the
locations of the walls and the floor in the image, and use pri-
ors on camera height and room size to solve for the position
of the camera. To resolve the scale ambiguity, we first fix the
height of the camera to 5ft, and solve for the distance from
the camera to the visible corners of the room. If the computed
room size is too large or small (e.g., height >12ft or height
<8ft), we raise or lower the height of the camera in 0.5ft
increments and re-solve for the room size until the scale is
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Fig. 3 Overview of our approach for matching a 3D model with a monocular image

within range. When rendering 3D models, we align the walls
of the models with the estimated wall locations relative to
the camera, and incorporate our calibrated camera parame-
ters (focal length and principal point) with a viewing frustum
to create renderings which align with our input image.

This setup allows us to project objects from our 3D model
library into the image plane in a manner which is consistent
with the estimated camera parameters. We use this renderer
as a fundamental tool in computing similarity features from
each 3D model. The following section details this process.

2.2 Similarity Features

An important question we address in this paper is, “What
features are useful for matching 3D scenes with monocular
images?” This issue is fundamentally complicated by the fact
that we need to compare two objects of a completely different
nature: an array of intensity/color pixels on the one hand, and
a set of surfaces with no appearance information on the other
hand.

To overcome this challenge, we introduce the concept
of similarity features. Unlike traditional features which are
extracted from a single image, similarity features involve
comparing an image with a 3D model to describe how similar
the model is to the input image. Our goal here is to rank each
3D model j, with respect to image i using similarity features
denoted by xj . x’ is a vector in which each entry corresponds
to a different measure of similarity between the image i and
the 3D model j. We use our renderer to produce synthetic

image descriptors for each 3D model, and compare these to
traditional image-based descriptors to compute each similar-
ity feature. Figure 4 includes example image descriptors and
their rendered counterparts used to compute each similarity
feature. Note that these are not photorealistic renderings, we
are simply rendering descriptors of each 3D model. This sec-
tion introduces our preliminary set of similarity features for
relating 2D images with 3D models.

p(object) masks: For each 3D model, we render a simple
object mask (i.e., each polygon in the model is rendered black
on a white background) as shown in Fig. 4a. This rendered
object mask is compared with p(object) image descriptors
which predict the locations of objects in an image.

We use the pre-trained Indoor Geometric Context model
of Hedau et al. (2009) and Hoiem et al. (2007) to estimate
p(object) masks (see Fig. 4b). We also train a probabilistic
classifier using the algorithm of Munoz et al. (2010) as a
second predictor of object locations in an image." This clas-
sifier was trained with more data than the Geometric Context
model and is more robust to the diversity of object colors,
textures, and illumination conditions seen in the SUN data-
base (Xiao et al. 2010).

After scaling each of these masks to be in the range
[—1, 1], the dot product between the predicted object loca-
tions and the rendered object masks indicate how well
the model matches our image. We treat our two p(object)

! Training was performed using 10-fold cross validation on a subset of
the SUN Database (Xiao et al. 2010), for which there exist LabelMe
annotations (Torralba et al. 2010).
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(a) rendered
object mask

(c) p(object)
(Monoz et al. 2010)

(b) p(object)
(Hedau et al. 2009)

(f) estimated
normals normals
(Lee et al. 2009) (Fouhey et al. 2013)

3|

(h) estimated
edges
(Arbelaez et al. 2011)

(d) rendered

normals

(e) estimated

(i) estimated edge
orientations

(g) rendered
edges

Fig. 4 Descriptors extracted from an input image (right columns), and
their corresponding rendered descriptors from the top-ranked 3D model

(a,d, g

descriptors separately as two independant similarity fea-
tures. The first compares the output of Hedau et al. (2009)’s
descriptor to rendered object masks, and the second compares
Munoz et al. (2010)’s output to rendered object masks. These
similarity measures are the first features we use to compare
3D models to an input image.

Surface normals: We use the plane-sweeping algorithm
of Lee et al. (2009) and the new 3D primitive algorithm
of Fouhey et al. (2013) to predict the surface normals of
each pixel in an input image. For each 3D model, we render
a surface normal image, by simply setting the red, green and
blue color components of each polygon to the x, y and z com-
ponents of the polygon’s surface normal. See Fig. 4d—f, for
examples of predicted surface normals, and rendered surface
normals. The normalized dot product between the rendered
descriptor and each surface normal quantifies their similarity.
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We use these values as separate features when scoring each
3D model. Lee et al. (2009)’s plane-sweeping algorithm pro-
duces a single surface normal estimate for each image, result-
ing in a single similarity feature; on the contrary, Fouhey et
al. (2013)’s data-driven 3D primitive algorithm produces out-
puts at varying levels of sparsity and confidence. We use the
dense interpretations from Sect. 4 of Fouhey et al. (2013)’s
algorithm, as well as the sparse surface normal estimates
at eight different levels of sparsity. Each of these nine sur-
face normal estimates are compared to 3D model surface
normal renderings to produce a nine-dimensional similarity
feature.

Edges: We extract edges from an input image using the
globalPb algorithm (Arbelaez et al. 2011) (thresholded at
p(boundary) > 0.5). These edges are compared to Canny
edges which are extracted from rendered surface-normal
images of each scene hypothesis (Fig. 4g, h). Pairs of edge
images (extracted from the input image and each rendering)
are compared using a modified symmetric Chamfer distance
(a € A indicates a is an edge pixel in image A):

1 . .
Acdge(A, B) =— Zmln (1&1{}1 lla — bl|, r)

|a| acA
1 . .
+m%mm(zn€1£1||b—all,f). (1)

To avoid the effect of outlier edges which do not match
well, we truncate individual edge distance penalties at differ-
ent thresholds (z € {10, 25, 50, co}). Intuitively, distances
computed with smaller values of t encourage fine-grain
matching of edges, while distances computed with larger
thresholds aim to penalize large errors. Each of the distances
computed with a different value of t is treated as a separate
feature, for a total of four features.

In addition, we compute a second edge similarity feature
which takes into account not only the location of edges,
but also their orientation. We use an oriented chamfer dis-
tance, which matches only edges which are within 30° of
each other. This reduces the effects of spurious edges which
are spatially close, but not properly oriented in the image. To
efficiently compute the oriented chamfer distance, we dis-
cretize edges into 12 overlapping bins of 30° covering the
half-circle. This is similar to the directional chamfer match-
ing approach introduced by Liu et al. (2010), with the addi-
tion of overlapping bins to alleviate the effects of quanti-
zation artifacts at the boundaries between buckets. We use
the same edge penalty truncation approach described above
to reduce the influence of outlier edges, resulting in another
four-dimensional similarity feature (corresponding to differ-
ent thresholds).
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2.3 Hypothesis Ranking

For a given input image, we render all of the 3D models in
our scene library and compute similarity features from the
renderings, as described above. We concatenate the object
mask (2), surface normal (10), and edge (8) features into
a 20-dimensional feature vector. A linear weighting of these
similarity features is computed to determine a matching score
indicating how similar each 3D model is to the given image.

We learn this weight vector using a max-margin learn-
ing framework. Using annotated training data, we can rank
how well each 3D model in our library matches each training
image. We compute a similarity score for each pair of images
and 3D models by comparing both the surface normals and
object locations of the rendered 3D models to renderings
of hand-annotated scene geometries which are treated as
ground-truth. For this ranking, we multiply the object mask
agreement score with the surface normal agreement score
for each pixel (both scaled to be in the range [0, 1]). This
combined score aims to count how many pixels in the image
satisfy two constraints: Firstly, objects in the rendered 3D
models should appear only where they are in the ground-
truth. Secondly, the surface normals of the 3D models at
these locations should also agree with the ground-truth sur-
face normals. Using this metric, we score how similar each
3D model is to each training image.

Our goal is to find a weight vector w which can correctly
rank pairs of 3D scenes (i.e.: w'x’ > wa,i if scene j
matches image i better than scene k). We use the difference
in masked surface normal scores as the hinge loss margin
st - This optimization takes the form of support vector rank-
ing (Herbrich et al. 1999):

Ao i
min > wl® + 3 &)

s.t.: wa; >w'x} + 83-,( - 5;-,{, £ 20. 2)

We optimize Eq. 2 using a stochastic subgradient method.
In each iteration, we select a training image i and a pair of 3D
models (j, k). If the current weight vector causes the pair of
3D models to be incorrectly ranked, or if their difference in
scores is less than the margin 8; ©» We compute a subgradient
and update the weight vector. This convex optimization is
repeated until convergence.

Prior to learning weights for each feature, we first per-
form feature selection by incorporating an £; penalty term,
enforcing sparseness:

A i
min 2wl + D g

st w'xl > w'xl + Bj'k - E;k, «‘E;k > 0. 3)

J

Features with negligible weights (less than 1%) relative to the
average weight are discarded, and the selected features are
re-weighted using the ¢, regularized SVM ranking described
in Eq. 2.

3 Viewpoint Selection

The problem of viewpoint estimation is very challenging.
Estimating the layout of a room, especially in situations
where objects such as furniture occlude the boundaries
between the walls and the floor remains unsolved. Recently,
researchers such as Hedau et al. (2010), Lee et al. (2010),
Peroetal. (2012) proposed mechanisms for adjusting the esti-
mated locations of walls and floors to ensure that objects (rep-
resented by cuboids) are fully contained within the bound-
aries of the scene. Inspired by these approaches, we aim to
intelligently search over viewpoint hypotheses. Intuitively, if
we can fit an object configuration using a particular view-
point hypothesis with high confidence, then that room lay-
out is likely correct (i.e., it allows for objects to be properly
matched). By searching over possible viewpoints, we aim
to alleviate the brittleness of our baseline scene matching
approach (Satkin et al. 2012) which relied on hard decisions
for the estimated viewpoint of an image. It should be noted
that our geometry estimation algorithm is one of many recent
works which rely on accurate viewpoint estimation Fouhey
et al. (2012); Gupta et al. (2011). These types of geometry
estimation algorithms are unable to recover when the room
layout estimation process fails.

Thus, we present a framework which does not assume any
individual viewpoint hypothesis is correct. Rather, we use our
learned cost function to re-rank a set of room layout hypothe-
ses by jointly selecting a combination of furniture and camera
parameters, which together best match the image. We search
over the top N room layout hypotheses, returned by the algo-
rithm of Hedau et al. (2009). For each individual room lay-
out, we use the estimated camera parameters corresponding
to that room layout to render every 3D model. This approach
scales linearly with the number of viewpoints and geometry
hypotheses explored, and is trivially parallelizable. More-
over, we can leverage the self-similarity of environments
to efficiently explore the search space in sublinear time as
described in (Satkin 2013, Sect. 3.6). In all our experiments,
we consider the top 20 results from Hedau et al. (2009)’s
room layout algorithm. However, our approach is agnostic
to the source of these viewpoint hypotheses, and additional
hypotheses from Lee et al. (2009), Peroetal. (2011), Schwing
and Urtasun (2012) or any other algorithm could easily be
incorporated to improve robustness.

Figure 5 illustrates the benefit of searching over various
camera parameters. The top row shows the result of 3DNN
using only the top-ranking room layout from Hedau et al.
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(a) Result using only the top-ranking camera parameters
from (Hedau et al. 2009)

(b) Result after re-ranking the top-20 hypotheses
from (Hedau et al. 2009)

Fig. 5 Exampleresults highlighting the benefit of searching over view-
point hypotheses. The top row shows the best matching scene geometry
using the top-ranking room layout hypothesis of Hedau et al. (2009).
The bottom row shows the best matching scene geometry after intelli-
gently selecting the best room layout

(2009). Note that the failure to accurately estimate the height
of the camera causes inserted objects to be incorrectly scaled.
However, by not limiting ourselves to a single camera para-
meter hypothesis, we can automatically select a better room
layout estimate, enabling a higher-scoring geometry match
to be found. Figure 5b uses the 10th-ranking hypothesis
from Hedau et al. (2009), and has the highest matching score
using our learned cost function.

Figures 6 and 7 show the full set of hypotheses considered
for a scene during our viewpoint selection process. Note that
the beds and nightstands almost fully occlude the wall/floor
boundaries in the image, resulting in an inaccurate room lay-
out estimate (see Fig. 6a). As shown in Fig. 7a, our baseline
scene matching algorithm does its best to find a 3D model
which when rendered from this inaccurate viewpoint aligns
with the input image; however, the result is incorrect. Look-
ing through the best matching scene geometries for each
viewpoint hypothesis, we see that the more accurate a view-
point estimate is, the more precisely we can find a matching
scene geometry which aligns with the input image. By inde-
pendently scoring and ranking each of these hypotheses, we
correctly identify Hypothesis 13 (Figs. 6m, 7m) as the best
viewpoint for this scene.

Selecting the room layout hypothesis which affords for the
best 3D model matching improves the accuracy of room box
estimation (14.0 % per-pixel error with viewpoint selection
versus 16.4 % error without viewpoint selection). See Sect. 5
for further analysis of the benefits of viewpoint selection for
the task of 3D reconstruction.
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4 Geometry Refinement

In order to accurately segment objects in an image, and reason
about their occlusions, we must precisely estimate their posi-
tions. However, a fundamental limitation of nearest-neighbor
approaches is that their outputs are restricted to the space of
object configurations seen in training data. This is a problem
which has affected both 2D and 3D non-parametric meth-
ods. Recently, algorithms such as SIFT flow (Liu et al. 2008)
have been developed to address this issue. The SIFT flow
algorithm perturbs a matched image by warping the pixels
to better align with the input image. However, because this
approach warps pixels in the image plane, there is no longer
a coherent 3D interpretation of the result. Thus, we propose
a two-stage geometry refinement algorithm which is inher-
ently 3D. Our method first searches for the best location of
each object in 3D, such that the projection of these objects
best align in the image plane, producing a more precise result.
Next, we search through a library of 3D models and try to
replace each object in the scene with objects that more pre-
cisely match the size and style of the objects in the image.
We now describe each of these refinement techniques and
demonstrate their effectiveness (both qualitatively and quan-
titatively).

It should be noted, that our algorithm is not the only
work to address 3D geometry refinement. In Hedau et al.
(2012), the authors present a refinement approach which
locally adjusts the position of cuboids to better match an
image. Similarly, Pero et al. (2011) perturb the locations of
cuboids as diffusion moves of a Markov Chain Monte Carlo
optimization, which also includes the addition and removal
of cuboids to the scene. The authors have recently extended
their algorithm to refine hand-crafted parametric models of
objects Pero et al. (2013). Our approach differs from these
works in our use of vast repositories of non-parametric mod-
els. This data allows us to not only detect the positions
and sizes of objects, but also their precise styles. More-
over, by not allowing objects to be arbitrarily resized, we
ensure that they maintain real-world dimensions. For exam-
ple, although beds have many possible styles, they cannot be
arbitrarily resized; they come in discrete sizes (queen, king,
etc.). Resizing household objects may violate real-world dis-
tributions, and result in scene geometries which no longer
afford for the human actions they were designed to enable.
Thus, we sample over discrete object hypotheses from 3D
Warehouse to refine scenes while maintaining object func-
tionality.

4.1 Object Location Refinement
We first search for local refinements of object locations which

improve the overall geometric scene matching score using
a stochastic geometry refinement algorithm. In each itera-
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(a) Hypothesis 1 (b) Hypothesis 2 (¢) Hypothesis 3 (d) Hypothesis 4 (e) Hypothesis 5

(f) Hypothesis 6 (g) Hypothesis 7 (h) Hypothesis 8 (i) Hypothesis 9 (j) Hypothesis 10

(k) Hypothesis 11 (1) Hypothesis 12 (m) Hypothesis 13 (n) Hypothesis 14 (0) Hypothesis 15

(p) Hypothesis 16 (q) Hypothesis 17 (r) Hypothesis 18 (s) Hypothesis 19 (t) Hypothesis 20

Fig. 6 Top 20 viewpoint hypotheses from Hedau et al. (2009) for an input image

(e) Hypothesis 5

(h) Hypothesis 8 (i) Hypothesis 9 (j) Hypothesis 10

(k) Hypothesis 11 (1) Hypothesis 12 (m) Hypothesis 13 (n) Hypothesis 14

(p) Hypothesis 16 (q) Hypothesis 17 (r) Hypothesis 18 (s) Hypothesis 19 (t) Hypothesis 20

Fig. 7 Object overlays for the best matching scene geometries given each viewpoint hypothesis
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(¢) Refined geometry

(d) Refined object locations

Fig. 8 Effects of the geometry refinement process. Note that object
boundaries are well-delineated after refinement

tion of the refinement, the locations of objects on the x—y
plane are perturbed (height off the ground remains fixed), by
adding Gaussian noise (o=1in) to the current objects’ loca-
tions. If the adjusted objects’ locations match the image better
than the previous locations, the new locations are saved. This
process repeats until convergence. In practice, a few hundred
iterations are required to reach a final refined scene geometry.

Figure 8 highlights the effects of our geometry refinement
process. Note the initial object locations in 8b, when pro-
jected into the image plane do not align with the actual object
boundaries. However, after refinement, in 8d the objects very
precisely align with the image boundaries. The projected
objects produce an excellent segmentation mask, and because
the scene interpretation is inherently 3D, we can properly
reason about occlusions and depth ordering.

Figure 9 shows an interesting visualization of the object
location refinement process for a scene with a bad initial
geometry estimate. Note the poor p(object) masks in Fig. 9b,
¢, resulting in the incorrect geometry match shown in Fig. 9d.
The location refinement algorithm slides these objects around
until the couch on the left nicely aligns with the bed in the
input image, and the end table is positioned where the night-
stand appears in the image. This example demonstrates the
capability of our refinement algorithm to adjust the locations
of objects in 3D, such that their projections best align with
the input image.

4.2 Object Swapping

The sizes, shapes and styles of objects found in real-world
environments is quite diverse. Just as our initial scene match-
ing approach is limited by the space of object configura-
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tions seen in training data, after location refinement, the
accuracy of our results is still limited by the set of object
geometries found in each matched 3D model. For example,
Fig. 10b shows an initial scene geometry match for which the
identities and locations of objects have been correctly pre-
dicted; however, the style of these objects are not accurately
matched. The image contains a canopy-style bed with a tall
metal frame, while our matched 3D model contains a more
traditional bed with a rounded headboard and footboard.

The high level of diversity in object styles found in real-
world scenes cannot be represented using parametric mod-
els. Thus, we leverage the vast collection of models in
3D Warehouse to search for objects which more precisely
match the input image. Here, we aim to go from coarse-level
object matches to instance-level matches. Our object swap-
ping algorithm is simple and intuitive. For each object in a
matched 3D model, we remove it from the scene and replace
it with a new object from the same category. When replac-
ing each object, we rotate and position the new models such
that they best align with the original objects’ positions. We
use the same similarity features and learned cost function
from Sect. 2.3 to score each object swapping hypothesis, and
select the instance which maximizes this score. Hundreds of
swapping hypotheses are considered for each object in the
scene, and scored independently.

Figure 10d shows the resulting scene geometry after object
swapping. Note that after object swapping, the unusual bed
style is correctly matched. Figure 10f shows the diversity
of hypotheses considered during the swapping process. By
searching through hundreds of 3D models, we automatically
select the instance which most precisely aligns with the input
image. See Fig. 11 for additional examples of object swap-
ping. Note that after swapping, the style and size of each
object is more precise than in the initial geometry estimate.

5 Evaluation

We now evaluate the performance of our 3DNN algorithm.
The goals of these experiments are two-fold. First, we ana-
lyze the added benefit of each component of the 3DNN sys-
tem: improved similarity features, geometry refinement and
viewpoint selection. In the next section, we compare 3DNN
with state-of-the-art 2D appearance-based scene matching
aproaches, to demonstrate the benefits of viewpoint invari-
ant scene matching.

5.1 Evaluation Metrics

For each of these experiments, we report performance
using the two “Pixelwise Surface Normal Accuracy” metrics
from Satkin et al. (2012), one measuring how accurately the
surface normals of all pixels are predicted, the second eval-
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(b) p(object): Hedau

i

(¢) p(object): Munoz (d) intial geometry

(e) intial overlay

(j) mid-refinement

(n) mid-refinement

(h) mid-refinement

(1) mid-refinement

(0) mid-refinement (p) mid-refinement

(q) mid-refinement (r) mid-refinement

(u) mid-refinement (V) mid-refinement

Fig. 9 Visualization of the geometry refinement process for a scene
with a poor initial geometry match. Note the incorrect p(object) masks
in (b) and (c), resulting in the poor initial geometry match (d). Given
this geometry, the location refinement algorithm slides these objects

(s) mid-refinement (t) mid-refinement

(w) final overlay (x) final geometry

around until the couch on the left nicely aligns with the bed in the input

image, and the end table is positioned where the nightstand appears in
the input image
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(f) Examples of additional beds considered for swapping.

Fig. 10 Example effects of object swapping. Note that after swapping, the canopy style of the bed is correctly matched. Shown below are additional
examples of the hundreds of beds considered during the swapping phase of the geometry refinement process

uating only those pixels which correspond to objects in the
ground-truth annotations. Although these metrics are infor-
mative for the task of surface normal prediction, they are
unable to capture how accurately objects in an image are
localized. For example, a horizontal surface corresponding
to a bed in an image may be scored as ‘“correct” even if
the predicted scene contains no objects. This is because the
horizontal floor has the same orientation as the bed’s sur-
face. Thus, we present results computed using a new met-
ric, “Matched Objects Surface Normal Accuracy.” This is a
strict metric which requires two criteria to be met: For each
pixel corresponding to objects in the ground-truth annotation,
we must first correctly predict that there is an object at that
location. We compute the dot product between ground-truth
and predicted surface normals only at those pixels for which
we “match” an object. Unmatched object pixels receive a
score of zero. This metric is more sensitive to correctly pre-
dicting the exact locations and geometries of objects in a
scene.

We also evaluate how accurately our algorithm can esti-
mate the freespace of a room from a single image. Figure 12
shows our ability to recover an architectural floorplan of a
room. Note that we are able to identify which regions in
space are occupied, estimate the distances between objects,
and even make predictions about regions that are not visi-
ble in the input images due to occlusions. In Hedau et al.

@ Springer

(2012) and Satkin et al. (2012), the authors present various
metrics for how accurately their algorithms can predict the
3D freespace of a scene. These metrics require rectifying the
predicted scene geometry, and are ill-posed when the esti-
mated viewpoint deviates substantially from the ground-truth
camera parameters. For example, if the estimated horizon
computed from vanishing points is incorrect and intersects
the ground-truth floor polygon, the rectification homogra-
phy (computed using the ground-truth camera parameters)
will produce incoherent results with points at infinity being
projected to finite locations when applied to the estimated
scene geometry.

Thus, we develop another new metric to measure freespace
prediction in the image plane: “Floorplan Overlap Score.”
For each object in the scene, we render its “footprint” by
setting the height of each polygon to 0. A simple pixel-wise
overlap score (intersection/union) of the object footprints can
now be used to compare the ground-truth floorplan of a scene
with our estimated scene geometry.

5.2 Experimental Dataset and 3D Model Library

Since the problem of monocular geometry estimation is rel-
atively new, there does not yet exist an established dataset of
images with detailed ground-truth object geometry and sur-
face normals. Thus, we have created a new dataset with anno-
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Fig. 11 Example object swapping results. Besides each input image are the results before (fop) and after (bottom) object swapping
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Fig. 12 Input images, automatically-selected 3D models, and overhead views (color indicates height: yellow low, red high). Results shown use

annotated camera parameters

Fig. 13 Example images and hand-crafted 3D models from our dataset

tated scene geometry building upon the SUN database (Xiao
etal. 2010). Our dataset consists of over 500 images from the
categories “bedroom” and “living room.” For each image, a
detailed 3D model was constructed using SketchUp (Google
Inc. 2000). This software allows users to label vanishing
points for camera auto-calibration and insert existing 3D
models of objects from the Internet to generate detailed mod-
els from an image. Figure 13 includes example 3D models
from our dataset. This dataset has been made publically avail-
able to researchers as the CMU 3D-Annotated Scene Data-
base Satkin et al. (2012).

We use these hand-crafted 3D models as ground-truth for
training our scene ranker, as well as for evaluating the perfor-
mance of our geometry estimation algorithm. Using images
with associated 3D models enables us to relate pairs of images
via their underlying geometry. Moreover, because each 3D
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model has an associated image (unlike data from 3D Ware-
house), we are able to transfer any metadata from the source
image when parsing an input image.

This type of 3D content with associated imagery is quickly
emerging, in large part due to the availability of low-cost
RGBD cameras, which has been a catalyst for the rapid
increase in 2.5D data. Researchers are now working on auto-
mated methods for inferring the full 3D geometry of a scene
given a 2.5D projection (Shao et al. 2012; Silberman et al.
2012). As these approaches become more effective, there will
be massive amounts of images with associated 3D models,
allowing for the first time the exciting possibilities afforded
by using the full power of geometric information in conjunc-
tion with conventional appearance-based techniques. Our
work shows how these emerging new sources of data can be
used by quantifying their effectiveness in terms of matching
efficiency (dataset size), generalization to unseen viewpoints,
geometry estimation, and object segmentation.

5.3 Quantitative Results

We perform all experiments using the CMU 3D-Annotated
Scene Database Satkin et al. (2012), containing 526 images
of bedrooms and living rooms. All training was performed
using 5-fold cross-validation to evaluate performance on all
images in the dataset. Figure 14 reports the performance of
our scene matching algorithm with individual components
turned on/off. As a baseline, we measure the performance
of Choi et al.’s 3D Geometric Phrases algorithm (Choi et al.
2013) on the dataset, which is shown in blue. Note that 3DNN
offers dramatic performance improvements over 3DGP by
producing detailed 3D models as opposed to coarse cuboids
as shown in Fig. 15. Our approach goes beyond the bounding
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Fig. 14 Analysis of the benefit of each component in our improved scene matching algorithm

boxes to generate detailed 3D models with accurate surface
normals and freespace estimates.

The green bars indicate the baseline performance using
our preliminary 3DNN scene matching algorithm described
in Satkin et al. (2012). The next set of bars (yellow) indi-
cate the added benefit of using the expanded set of similarity
features presented in Sect. 2.2. Note that the additional simi-
larity features account for a large boost in performance. This
effect is especially pronounced in the matched object surface
normals and floorplan overlap scores, for which accurately
predicting the locations of objects is crucial. The red bars
show the performance by running our geometry refinement
process (with the new feature set). The purple bars show
the performace gains achieved via viewpoint selection (with
the new feature set). The gray bars indicate the performance
achieved by running the full 3DNN algorithm with new fea-
tures, viewpoint selection and geometry refinement. Lastly,
for comparison, we report in pink the performance of our
scene matching approach if we were to use annotated view-
points (similar to the analysis in Satkin et al. (2012)). The
gap in performance between the gray and pink bars repre-
sents the remaining error due to incorrect viewpoint estima-
tion. Comparing the red, gray, and pink bars shows that our
viewpoint selection mechanism accounts for a substantial
performance gain; however, there still remains considerable
room for improvement. This is most pronounced in the all
pixel surface normal and floorplan overlap scores, which are
sensitive to correctly estimating the locations of the walls
and floors in a scene.

These extensions to our baseline scene matching algo-
rithm have resulted in considerable improvements to both the
robustness and precision of our results. Figures 16 and 17
include example results of 3DNN on a wide variety of
bedroom and living room scenes. Note that we are able to
produce accurate 3D models shown in the surface normal
renderings beside each input image. In addition, each object’s

(b) 3DNN geometry

(¢) 3DGP visualization

(d) 3DGP geometry

Fig. 15 Comparison of the detailed geometry inferred by 3DNN with
cuboids generated by 3DGP Choi et al. (2013)

boundaries are well-delineated due to our geometry refine-
ment stage, as indicated in the overlaid object segmentation
masks.

We quantify the benefits of viewpoint selection by com-
paring the accuracy of our results with and without viewpoint
selection. Figure 18 shows the distribution of performance
gains seen across all images in the CMU 3D-Annotated Scene
Database as a result of the viewpoint selection process. The
y-axis indicates how much the matched object surface nor-
mal score was affected via viewpoint selection. Note that for
approximately two-thirds of the images, the viewpoint selec-
tion process results in an improved scene geometry (indicated
in green). Not only does viewpoint selection result in more
accurate object geometries, it also improves the accuracy
of room box estimation by re-ranking viewpoint hypotheses
based on which room layout affords for the best 3D model
matching (14.0 % per-pixel error with viewpoint selection
versus 16.4 % error without viewpoint selection).
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JWE/L

Fig. 16 Qualitative results of bedroom scenes. From left to right input images, surface normal renderings and overlaid object segmentation masks
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Fig. 17 Qualitative results of living room scenes. From left to right input images, surface normal renderings and overlaid object segmentation
masks
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Fig. 18 Distribution of improvements resulting from the viewpoint
selection process. Performance is measured using the matched object
surface normal scores. Green indicates a performance increase and
examples in red resulted in a marginal performance decrease

In Sect. 4.1, we presented an algorithm to refine the loca-
tions of objects in 3D, and in Sect. 4.2, we presented an
algorithm to replace individual objects from a 3D model
with objects which more closely match the input image. We
now evaluate how each of these refinement methods affects
the overall performance of our scene matching algorithm.
Figure 19 shows the distribution of performance gains seen
across all images in the CMU 3D-Annotated Scene Database
as a result of the geometry refinement process. The dashed
line shows the effects of only moving objects and the dotted
line shows the effects of only swapping objects. Quantita-
tively, these two refinement mechanisms perform similarly,
resulting in performance gains on approximately two-thirds
of the images. However, by combining the two refinement
processes, further performance gains can be achieved, as indi-
cated in the green region of the paired error plot.

Quantitatively, the geometry refinement stages of 3DNN
result in modest improvements. This is expected, as the
refinement process is inherently local and designed to make
small modifications, not major changes which would result in
dramatic effects on performance (if a 3D model required sub-
stantial refinement, it is not a good scene match, and a differ-
ent model should have been selected). However, qualitatively
our results after refinement are markedly better, with objects
being well-localized and their styles properly modeled. These
effects are most pronounced in the matched object surface
normal and floorplan overlap scores, for which precisely
localizing and matching the style of objects is emphasized.

5.4 Feature Analysis

We perform two experiments to analyze the importance of
each feature for 3D model matching. First, we run a standard
ablative analysis to see how much each feature contributes
to the overall performance of our system. Next, we run our
scene matching pipeline using only a single feature (or type
of feature), and compare the performance of each feature
independently with the performance of the full feature set.
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Fig. 19 Distribution of improvements resulting from the geometry
refinement processes. Performance is measured using the matched
object surface normal scores. Green indicates a performance increase
and examples in red resulted in a marginal performance decrease. The
dashed and dotted lines indicate the performance of only moving or
only swapping objects, respectively

The results of both experiments emphasized the impor-
tance of our p(object) features. Figure 20 shows an example
of a relatively simple scene for which Hedau et al. (2009)’s
Indoor Geometric Context is unable to accurately estimate
the locations of objects; however, our new approach suc-
ceeds. Note that the failure to correctly identify which pixels
belong to objects (Fig. 20b) results in a poor 3D model match
(Fig. 20c), which is consistent with the p(object) prediction.
However the classifier of Munoz et al. (2010) correctly iden-
tifies the object locations, enabling better scene matching
(Fig. 20e).

These p(object) features are vital to 3DNN’s perfor-
mance; they are most heavily weighted by our support vector
ranker, and their ablation results in the largest drop in perfor-
mance. Interestingly, the removal of either p(object) feature
has only a small effect on system performance; howevever,
removing both p(object) features results in a dramatic drop
in performance, as shown in Fig. 21. This implies that the
two features encode much of the same information, and can
compensate when the other is removed.

Our inability to robustly rank geometric hypotheses is a
result of the challenges inherent in computing the similarity
between an image and 3D models. The similarity features
used for this are at the core of the 3DNN algorithm; they are
required not only to select the 3D model which is most similar
to an image, but also to rank viewpoint hypotheses and to
determine the location and style of objects during geometry
refinement. Thus, continued research into the development
of robust new similarity features is likely to result in further
performance gains.

6 2D Versus 3D Nearest Neighbor

A natural question to explore is, “What are the benefits
of 3DNN compared to a traditional 2D nearest-neighbor
approach?” Although 2D nearest-neighbor approaches are
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Fig. 20 Effects of incorrect object location estimation on scene match-
ing. Note in (b) that only a small region near the headboard of the bed is
predicted to belong to an object using our preliminary p(object) feature,
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Fig. 21 Change in performance resulting from the removal of each
p(object) similarity feature

powerful, a fundamental limitation of these techniques is
the need for vast amounts of data. For a traditional image
matching approach to succeed, there must be an image in
the recall corpus which is very similar to the input image
(i.e., captured from a similar viewpoint, lighting conditions,
etc.). This has propelled the growth of datasets, which now
measure in the millions of images (Hays and Efros 2007; Tor-
ralba et al. 2008). Moreover, despite these massive datasets,
2D nearest-neighbor approaches cannot generalize to never-
before-scene viewpoints.

Consider the pair of scenes in Fig. 22. Note the images
were captured from drastically different viewpoints. A tra-
ditional appearance-based image matching approach such
as Liu et al. (2008) and Oliva and Torralba (2006) fails to gen-
eralize across such extreme viewpoint differences. Although
the scenes appear quite different from the viewpoints they
were captured, they have a lot in common: both scenes con-
tain a couch facing a fireplace at approximately the same
distance from each other. In this section, we show that we

(b) original p(object)

|
.

(d) new p(object)

(c) original scene match

(e) new scene match

resulting in a poor scene match (c¢). However, as seen in (d), our new
p(object) feature can more accurately predict the locations of objects,
enabling a good scene match (e)

»~ s

(a) Input image (b)2DNN match
(Oliva and Torralba
2006)

(¢) 3DNN match

(d) Automatically transferred object labels

Fig. 22 Extreme viewpoint differences. Traditional appearance based
image matching approaches fail to generalize across such extreme view-
point differences; however, our approach is able to match the geometry
of these two scenes, and transfer object labels

are able to automatically match these images by comparing
the appearance of one image with the geometry of another.
By decoupling the viewpoint and the geometry of an image,
we develop a scene matching approach which is truly 100 %
viewpoint invariant.

6.1 Geometry Estimation

We now quantify the performance of 3DNN with a variety
of baseline scene matching approaches, including state-of-
the-art 2D nearest-neighbor approaches. We compare 3DNN
with our baseline scene matching approach from Satkin
et al. (2012) as well as two popular 2D nearest-neighbor
approaches: GIST Oliva and Torralba (2006) and HoG Dalal
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Fig. 23 Comparison of 3DNN with state-of-the-art 2D nearest-
neighbor approaches and the geometry matching algorithm of Satkin et
al. (2012)

and Triggs (2005) matching.? Figure 23, reports the results
for 3DNN compared to each baseline, for the task of geom-
etry estimation. Note that our baseline 3D scene matching
algorithm (indicated in yellow) does not offer substantial
improvement over the 2D nearest-neighbor approaches on
the more challenging metrics (matched object surface nor-
mals and floorplan overlap score); however, 3DNN exhibits
dramatic improvement on each of these metrics.

6.2 Dataset Size

Itis well known that for appearance-based image matching to
be effective, there must be a large recall corpus of images to
match with Hays and Efros (2007) and Torralba et al. (2008).
This is because the data set needs to include recall images
captured from a similar viewpoint as the query image. On the
contrary for 3DNN, the viewpoint and the geometry of the
recall images are decoupled. Thus, each scene provides an
exemplar which can be matched to images from any view-
point.

We evaluate this by experimenting with the size of the
recall corpus. Figure 24 shows how the performance of
3DNN increases as a function of dataset size, compared to
GIST and HoG matching. We report results using two of the
more challenging metrics: “matched object surface normal
scores” (solid lines) and “floorplan overlap scores” (dashed
lines). In these experiments, we consider recall dataset sizes
between 1 and 500 images. For each dataset size, we select
random subsets of images from the full recall set, and report
the performance of each algorithm on the smaller datasets.
Due to the high variance in performance using small recall
sets, we average performance across 1,000 random sub-

2 GIST: 4 x 4 blocks, 8 orientations (code from Oliva and Torralba
(2006)). HoG: 20 x 20 blocks, 8 orientations (code from Vondrick et
al. (2013)).
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Fig. 24 Accuracy as a function of dataset size. Solid lines indicate
“matched objects surface normal score,” dotted lines indicate “floorplan
overlap score.” Note the logarithmic x-axis

sets of each size. For fair comparison, we do not use our
sequence optimization or hypothesis score prediction during
these experiments.

There are two important properties of 3DNN we can iden-
tify from this graph. Firstly, note that the red plots for 3DNN
start out with a higher accuracy (even for a dataset size of one
image). This is because our algorithm starts by estimating the
room layout of each image, identifying the locations of floors
and walls. On the contrary, GIST and HoG matching do not
incorporate this knowledge directly, and must infer the view-
point of the scene by finding a similar image from the recall
corpus.

Secondly, note that the curves for 3DNN are steeper than
for the appearance-based approaches. This is because on
average, each additional training image provides more infor-
mation in its geometric form, than the raw pixels used in
GIST or HoG matching. This indicates that performance is
increasing more quickly as a function of the dataset size,
and that fewer training examples are required to achieve the
same level of performance using 3DNN compared to a tradi-
tional appearance-based 2D nearest-neighbor scene match-
ing approach. Remarkably, 3DNN is able to achieve a notice-
able performance boost using a recall set size of only 10
images or fewer, due to the algorithm’s ability to generalize
across never-before-seen viewpoints.

7 Application: Object Recognition

We now explore how our approach can be applied to one
of the most common computer vision tasks—object recog-
nition. We can transfer the identities of objects by project-
ing them onto the image plane to produce per-pixel object
labels. Additionally, we can integrate the output of other
object detectors to create more robust results.



Int J Comput Vis (2015) 111:69-97

89

1.0

—— GIST Matching

—— HoG Matching

—— 3DNN (w/o Geometry Refinement)
e GIST + SIFT Flow

=== HoG + SIFT Flow

m— 3DNN

—— 3DGP

0.8 -

0.6

Detection Rate (beds)

0.20

0.15

0.10

0.05

Detection Rate (couches)

0.00
0.5 0.6 0.7 0.8 0.9 1.0

Pixelwise Overlap Score Threshold

Fig. 25 Object detection rate as a function of overlap score strictness
for the “bed” and “couch” categories

7.1 Object Detection and Segmentation

Our mechanism for inferring the structure of a scene in 3D
provides us with rich information about the depth ordering
and the occlusions of objects when projected onto the image
plane. Thus, we should be able to not only detect the locations
of objects, but also segment their spatial support in the image
by precisely identifying their boundaries. To verify that using
3D cues is an attractive alternative for pixel-based object
segmentation, we evaluate the per-pixel overlap score of the
ground-truth and the object labels estimated by 3DNN.
Figure 25 analyzes the detection rate of 3DNN, compared
to various appearance-based image matching baselines. We
measure performance for the “bed” and “couch” categories,
two of the most prominent objects in the CMU 3D-Annotated
Scene Database. We vary the pixelwise overlap score thresh-
old, and compute what percentage of objects are detected
at each threshold. Note that at a stricter threshold of over-
lap score > .75, the baseline appearance-based approaches
detect very few objects; however, 3DNN still performs well.

Naturally, 3DNN’s ability to precisely segment objects
is due in part to the geometry refinement stage. To analyze
the benefits of this process, we measure the performance of
3DNN with and without the refinement stage. As anticipated,
by refining the predicted locations of objects, we achieve a
significant (on the order of 5 %) boost in detection rate. For
fair comparison, we run the SIFT flow algorithm (the state-
of-the-art 2D refinement process) as a baseline. The SIFT
flow algorithm of Liu et al. (2008) has been shown to be a
robust technique for aligning matched images. By warping
each matched scene, SIFT flow refines the location of objects
in the image plane, akin to our geometry refinement process.
We apply the SIFT flow algorithm using code provided by Liu
et al. (2008); this process takes the top-10 scene matches
(using either GIST or HoG), warps each matched image, and
computes the energy of each warping. We then re-rank the
top-10 scene matches according to their SIFT flow energy,
and score the top-ranking warped recall image. Although the
SIFT flow process yields a significant boost in performance,
the algorithm is still not as effective in accurately identifying
and segmenting objects compared to 3DNN. Moreover, a key
distinction between our geometry refinement process and the
SIFT flow algorithm, is that our approach is inherently 3D
and produces physically meaningful results. On the contrary,
because SIFT flow warps pixels in the image plane, the result
no longer has a coherent 3D interpretation.

As an additional baseline, we measure the performance
of 3DGP Choi et al. (2013) for the task object detection and
segmentation. 3DGP’s performance, indicated by the pur-
ple plots in Fig. 25, is on-par with 2DNN methods for the
bed category; however, their approach performs better on the
couch category by leveraging the power of Felzenszwalb et
al. (2010)’s discriminatively trained object detector and by
training with an order of magnitude more imagery compared
to 3DNN.

7.2 Integrating Discriminative Object Detections

Bottom-up appearance-based object detectors such as the dis-
criminative deformable parts model of Felzenszwalb et al.
(2010) have been at the forefront of the object recognition
field. As a baseline for comparison, we train Felzenszwalb et
al. (2010)’s part-based detector using code provided by Gir-
shick et al. (2012). It is important to note that object detectors
are in a fundamentally different class of algorithms than our
approach. Most discriminative object detectors have a tun-
able parameter which can be adjusted to achieve arbitrarily
high recall by predicting the object at all locations and scales
in the scene (at the cost of reducing precision). However, our
approach produces a single 3D model for each image, and
uses physical constraints which do not allow objects to be
hypothesized at arbitrary locations. Thus, our output repre-
sents a single point on the precision recall curves.
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Many researchers have successfully demonstrated the
ability to integrate the output of multiple object recogni-
tion systems to create a more robust detector. For exam-
ple, in Hedau et al. (2010), the authors combine the scores
from their “boxy object detector” with Felzenszwalb et al.
(2010)’s discriminatively trained deformable part model to
produce a state-of-the-art bed detector. Hedau et al. showed
that while each of the two approaches perform well on their
own, the integration of the two algorithms results in a signifi-
cant performance boost. Their approach assumes the outputs
of each algorithm are statistically independent and multiplies
the scores from their boxy object detector with the scores
from the deformable parts model.

Following the paradigm of Hedau et al. (2010), we inte-
grate our object detections with the bounding-box detections
from Girshick et al. (2012), as a post-processing step. For
each object detection, we boost the DPM detector’s confi-
dence if our result is in agreement. Specifically, we compare
each of the bounding boxes from our results with those from
the DPM. If their overlap score is greater than a set thresh-
old, we increase the DPM’s confidence by a fixed amount. To
determine the best values for this threshold and the amount
by which to boost the DPM’s confidence, we perform a grid
search after partitioning the dataset into 5folds (80 % train,
20 % test).

Figure 26 shows the performance of Felzenszwalb et al.
(2010)’s deformable parts model (DPM) with pairs of preci-
sion recall curves for the bed and couch categories, respec-
tively. The plots on the left use the traditional 50 % over-
lap score measure. On the right, we measure performance
using a 75 % overlap score threshold; this is a stricter met-
ric, which requires objects to be more precisely localized.
The purple plots report the performance of the DPM detec-
tor and the red plots show the performance of integrating the
DPM’s detections with our object predictions. Note that the
combined detection results provide a modest improvement
(~10 % relative increase in average precision) over the base-
line DPM accuracy. This indicates that our approaches to
object classification and geometry estimation provide com-
plementary information. Experimentally, we achieved simi-
lar results to Hedau et al. (2010). In isolation, the authors’
cuboid detector does not perform as well as Felzenszwalb et
al. (2010)’s DPM; however, by intelligently integrating the
results of their cuboid detector and the DPM’s results, they
achieve state-of-the-art performance.

Quantitatively, the DPM out-performs our approach when
measured using a liberal 50 % overlap score detection thresh-
old. However, as the overlap score threshold is increased,
our approach shows a modest improvement over DPM.
This result is not surprising—the features and model used
in Felzenszwalb et al. (2010)’s detector are discriminative in
nature and explicitly aim to classify each object in the scene.
On the contrary, our approach uses features which intention-
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Fig. 26 Object detection precision recall curves for the “couch” cate-
gory. Our approach provides complementary information to DPM; thus,
integrating both results improves performance

ally ambiguate between object categories. For example, the
p(object) feature simply predicts whether or not an object is
present, not the identity of the object. This suggests a new
family of features which could be integrated into the 3DNN
algorithm. Our similarity feature framework enables us to
compare any information that can be estimated from an image
and rendered from 3D models. Thus, we could incorporate
the outputs of an object detector into a similarity feature to
leverage the performance of these successful discriminative
approaches in a manner similar to Li et al. (2010)’s Object
Bank features.

8 Application: Affordance Estimation

Given a detailed geometric representation of a scene, there
are many possible higher-level interpretations that we can
generate. In this section, we summarize our work in affor-
dance estimation (Gupta et al. 2011). This work leverages
the availability of motion capture data and derives a novel
human-scene interaction model capable of predicting the
locations of possible human poses from a single image. Our
affordance estimation process utilizes an intermediate geo-
metric representation of a scene. We show the importance
of high-quality geometry estimates for this problem, and
incorporate our data-driven geometry estimation algorithm
to improve upon baseline approaches.

8.1 Algorithmic Overview

This work is an attempt to marry 3D scene understanding
with human action modeling. We present a novel qualitative
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(a) Input image

(b) Geometry estimation

(¢) Our human-centric representation

Fig. 27 a An input image, b geometry estimated using 3DNN, ¢ our human-centric representation

scene representation that combines 3D scene geometry with
a set of possible human actions, to create a joint space of
human-scene interactions. A key insight is to note that there
are only two constraints on a 3D human pose that are rele-
vant for embedding it within a given geometry: (1) the 3D
space (volume) the pose occupies, and (2) the surfaces it is
in contact with. We divide the space around the human actor
into blocks and associate each block with a O or 1 based on
whether the block is occupied or not. In addition, each block
may require an external support in a particular direction. For
example, in the sitting pose (with back support), we need a
horizontal surface below the pelvic joint to support the body
and a vertical surface to rest the spine. In a similar manner,
for the “reaching” action a horizontal support is required at
the feet and a vertical surface of interaction is required to
represent the point of contact of the hands (Fig. 27).

By discretizing the scene geometries and human poses
into an occupancy matrix, we can efficiently search for loca-
tions and poses which satisfy the freespace and support con-
straints. We slide the discretized human blocks around the
scene occupancy matrix using a binary correlation opera-
tion. Intuitively, we are searching for locations for which
the human pose does not intersect any objects. Additionally,
the locations must have the appropriate supporting surfaces
to afford each pose. Both of these constraints can be satis-
fied using simple correlation operations. To account for the
deformation of furniture and the human body, we perform an
erosion and dilation process on a scenes’s occupancy matrix
before performing the correlation operations. See Gupta et
al. (2011) for a detailed description of this algorithm.

8.2 Results and Evaluation

We now evaluate the utility of our 3D geometry estimation
algorithm for determining the affordances of a scene. Fig-
ure 28 shows the results of this approach. To visualize the
whole range of possible poses, we overlay colored masks
indicating the locations of pertinent joints for a given pose.

For example, we show in blue the locations where the pelvic
joint makes contact with a valid surface of support for the
“sitting reclined” task. We also indicate in cyan the locations
where the back makes contact with a vertical support. Exam-
ple human stick figures (extracted from the mocap data) show
representative valid poses in each scene. As is evident from
the stick figures, our approach predicts affordances that can-
not be represented by basic object categories. For example,
on the “sitting reclined” pose, our approach combines the
vertical surface of the bed with the horizontal surface of the
ground to predict human poses.

To quantify the performance of our affordance estimation
algorithm, we measure how accurately we can predict the
possible locations of human poses in each scene. We evalu-
ate our affordance estimation algorithm using the data-driven
scene matching approach for geometry estimation presented
in this paper, as well as the geometry estimation approach
from Gupta et al. (2011). The approach of Gupta et al. (2011)
is a precursor to our geometry estimation algorithm, which
uses a simplified geometry estimation process to find a set
of cuboids which model the arrangement of furniture in a
scene. This approach begins with the same autocalibration
technique discussed in Sect. 2.1; however, it considers a lim-
ited number of geometry hypotheses, commits to a single
viewpoint estimate, and uses only the original p(object) sim-
ilarity feature for scoring each hypothesis.

We also compare our algorithm with a standard appearance-
based baseline; training a separate classifier for each task.
These methods have shown good performance for different
pixel labeling tasks, such as object categorization and quali-
tative geometry estimation. Each pose classifier uses appear-
ance features computed from an image to label the pixels
where a relevant body joint can appear for that human pose.
For example, the “sitting upright” classifier predicts where
a person can sit by indicating where the pelvic joint could
rest in an image when the person is sitting. Specifically, we
use the image features and multiple segmentations classifier
of Hoiem et al. (2007), and 50 training images for each clas-
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Fig. 28 Qualitative performance of our affordance estimation
approach. The images in the first row are the input to our algorithm.
The second row shows our estimated 3D scene geometry. The third row
shows the possible pelvic joint and back support locations in blue and
cyan respectively for the “sitting reclined” pose. The fourth row shows
the possible pelvic joint locations in blue for the “sitting upright” pose.

sifier. We manually labeled locations in 50 test images for
four poses where:

(a) apelvic joint can rest while sitting upright,
(b) a pelvic joint can rest while sitting reclined,

@ Springer

The fifth row shows the locations where a human’s back can rest when
“laying down.” The last row shows the vertical surfaces a person’s hand
can touch from a standing position for the “reaching” pose, color coded
to indicate the corresponding pose. Each scene also includes a repre-
sentative stick figure for each pose

(c) ahuman’s back can rest when laying down,
(d) a hand can reach on a vertical surface.

Using these annotations, we compute the pixelwise over-
lap score between each algorithm’s predicted pose locations
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Fig. 29 Quantitative comparison of our affordance estimation algo-
rithm with two baselines

and the ground-truth. Figure 29 shows the performance of
our approach compared to the baseline appearance classifier
using geometric context, and affordances computed using the
coarse geometry estimates from Gupta et al. (2011) on each
of the four classes.

Note that our approach outperforms the two baselines
for all poses. While the baseline approaches do a decent
job in prediction valid locations for “reaching” and “lay-
ing down,” their performance is markedly lower for the
“sitting upright” and “sitting reclined” poses’. Intuitively,
this is because detecting locations for reaching and lay-
ing simply requires identifying the locations of walls and
floors in an image, which spatial priors can easily encode.
This is akin to easier categories such as ground and sky in
pixel classification literature. However, accurately detecting
possible sitting poses requires precise estimates of scene
geometry and cannot be captured via appearance-based
approaches.

9 Application: Geometry-Aware Object Insertion

Many graphics applications involve the insertion of new
objects into existing images or videos (e.g., Colburn et al.
2013; Karsch et al. 2011; Lalonde et al. 2007). In order to
achieve photorealistic results, the geometry and lighting of a
scene must be known (or estimated). Without accurate mod-
els of a scene it is impossible to properly reason about how
objects should be positioned and oriented, which portions of
these objects are visible or occluded, and how complex light-
ing interactions such as reflections and shadows should be

3 Note Tn Gupta et al. (2011), their approach outperformed the appear-
ance baseline. This is due to the selection bias in creating the dataset for
that paper, such that only images with accurate autocalibration estimates
from Hedau et al. (2009) were used. However, for these experiments an
unbiased sample of images were selected.

properly rendered. In this section, we explore how 3DNN’s
ability to automatically estimate the geometry of a scene
enables photorealistic object insertion.

Karsch et al. (2011) present a framework which allows a
user to quickly annotate the geometry of a scene, and roughly
specify the locations of directed light sources. Their system
then automatically generates a physical model of the scene
including the position, shape and intensity of light sources.
Given an estimated scene geometry (via user annotation), the
authors present an algorithm to recover the material proper-
ties and illumination conditions in the scene. Their method
uses intrinsic image decomposition to determine the albedo,
direct illumination and indirect illumination of a scene by
building upon Grosse et al. (2009)’s Color Retinex algorithm
and Guo et al. (2011)’s shadow detection and removal algo-
rithm. After estimating the geometry, lighting and material

(b) Synthetically inserted objects.

Fig. 30 Examples of synthetically inserted objects. Note the accurate
occlusion and depth ordering of the dresser, and the realistic reflections,
a input image, b synthetically inserted objects
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(¢) IKEA Hemnes

(d) IKEA Liatorp

(e) input image (f) IKEA Lack

(g) IKEA Klubbo (h) IKEA Liatorp

Fig. 31 Photorealistic synthetic furniture insertions from the IKEA catalog
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properties of the scene, Karsch et al. (2011) allow users to
position new 3D objects into the scene which are photore-
alistically rendered using the additive differential rendering
method of Debevec (1998) and the spectral matting algorithm
of Levin et al. (2008). The rendered results of their approach
are high-fidelity. In fact, the results are often photorealis-
tic enough that humans often cannot differentiate between
objects which were originally in the image and objects which
were inserted.

This approach to object insertion relies on reconstruct-
ing the geometry of the scene. This is done in Karsch et al.
(2011) by requiring users to manually annotate each scene’s
geometry, and recently in Karsch et al. (2014), by matching
the input image to RGBD images. Integrating our geome-
try estimation algorithm provides a way to take advantage
of prior, detailed 3D models in estimating the 3D geometry
of the scene. Specifically, we can incorporate our automati-
cally estimated camera parameters, surface normals, occlu-
sion masks and depth orderings rather than using human
annotations.

Figure 30 shows an example scene with three syntheti-
cally inserted objects: a dresser behind the bed, a lamp on
one nightstand, and a small kinetic sculpture on the other
nightstand. By using our estimated camera parameters, the
added objects are automatically scaled and oriented correctly,
and the perspective effects of these objects are in corre-
spondence with the scene’s vanishing points.* The estimated
scene geometry enables objects to be automatically posi-
tioned to lay upon horizontal surfaces. Moreover, our pre-
cise scene geometry enables automatic occlusion reasoning
(as seen with the dresser behind the bed). Not only is the
scene geometry useful for positioning each object, the esti-
mated surface normals and depths are critical for ensuring
proper lighting effects. For example, the reflection of the bed
is visible in the inserted mirror, and the light emitted from
the lamp is realistically scattered off the edge of the bed.

Our estimated object categories and orientations can also
be used to automatically position new objects in a scene at
realistic locations using co-occurrence priors. For example,
if we know the position and orientation of a couch in a scene,
we can infer the most likely location of a coffee table relative
to the couch’s position.

‘We now demonstrate a proof-of-concept application which
incorporates 3DNN with Karsch et al.’s synthetic rendering
algorithm to create an augmented reality product catalog. The
goal of this application is to allow users to see how furniture
would look in their home. We run our geometry estimation
pipeline on images and identify the positions and categories
of each object present in the scene. Then, using our known

4 Note The object insertion renderings included in this section were cre-
ated by Kevin Karsch at the University of Illinois at Urbana Champaign
during a collaboration with the author.

co-occurrence priors, we recommend objects which have a
high likelihood of co-occurring with objects currently in the
scene. Not only can we recommend what object could be
added to a scene, we automatically position and orient the
objects relative to other objects in the scene. For example,
a coffee table should be centered in front of a couch with
approximately 1.5ft in between the objects.

Figure 31 show example scenes for which we automat-
ically insert coffee tables from the IKEA catalog (IKEA
2013), using texture mapped 3D models from Polantis
(2010). Note that the coffee tables are automatically sized
and positioned at realistic locations in the scenes. In addi-
tion, the high-fidelity rendering approach of Karsch et al.
(2011) produces photorealistic results with accurate lighting
effects (reflections, scattering, shadows, etc.). This applica-
tion would not be feasible without precise and detailed geo-
metric representations, which traditionally require manual
annotation.

10 Closing Thoughts

Recovering the 3D structure of a scene from a single 2D
projection is an inherently ill-posed problem, and remains a
tremendous challenge for vision researchers. However, we
believe it is an important problem to address, as determining
the geometry of an environment provides a complete repre-
sentation which can be used to answer virtually any ques-
tion about our world, ranging from object categorization and
localization to freespace and affordance estimation.

To tackle this problem, we leveraged the recent growth
and availability of 3D data to integrate geometric reasoning
and machine learning. The methods presented in this paper
should not be thought of as a final algorithm, rather they
represent a general framework which can be extended and
adapted for different tasks. There are four key parts of this
framework:

1. A mechanism for aligning 3D data with images via auto-
calibration

2. A data-driven means for generating geometric hypothe-
ses

3. A means for comparing each hypothesis to an input image
via rendering

4. An algorithm for ranking each hypothesis using similar-
ity features

Different environments, such as outdoor settings, would
require an alternative mechanism for alignment and similar-
ity features which are tuned for the task; however, the overall
3DNN architecture can be directly adapted.
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