
Approach
Extract flow and RGB features from pretrained I3D network [1]  for every 16 frames of video to get input features.

Use graph layer to build a graph from each input video. Classify graph output of each time segment in to c classes.

Average top k time segments to get video level score, where .  Use multi class cross entropy loss.

If two cliques have similar classification, encourage them to have high edge weights. Use Co-Activity Similarity Loss [2]: 

Quantitative Results

Use cosine similarity f (.) of 𝜙 to weigh edges in the graph layer: 

Videos as Graphs
Break up each video in to l time segments and extract 

features per time segment.
Represent each time segment as a node in a graph.

Nodes’ edge weights are proportional to their similarity.

G transforms each row of X to a weighted combination 
of other rows of X

G is graph 
adjacency matrix.

 
W is learned 

weight matrix.

Motivation and Key Idea
Challenge: 

Temporally localize actions in videos without frame level 
annotation, using only weak video level training labels.

Weakly-supervised systems must use similarity between 
time segments to make predictions.

Key Idea: 
Train and infer on clusters of similar time segments 

explicitly using graph convolutions.

Qualitative Results
Comparison Against FC-CASL

Additional Results

Failure Cases

Visualizing Graphs

Conclusion
Our novel weakly supervised action localization method 
explicitly uses similarity between video segments during 
both training and testing by using graph convolutions.

The method pushes the state of the art and outperforms 
equivalent networks that do not use graphs.
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What is a Baseball Pitch? 

A single action?

Or a distinct cluster of actions?

Linear Layer Graph Convolution Layer

Use an L1 loss to encourage disjoint cliques:
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Method 0.5 0.7 0.9
UNTF 7.4 3.9 1.2

AutoLoc 27.3 17.5 6.8

W-TALC 37 14.6 -
Ours 29.4 17.5 7.5

Hyperparameter d determines k 
used in multi instance learning 

loss. It affects the temporal 
length of localization 

predictions. Varying d randomly 
during training can help.

On Charades [10] we 
achieve 15.8 mAP.

ActivityNet 1.2 [9] Performance
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