Action Graphs: Weakly Supervised Action Localization with Graph Convolution Networks
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Approach

Extract flow and RGB features from pretrained |13D network [1] for every 16 frames of video to get input features.

Motivation and Key ldea

Challenge:

Temporally localize actions in videos without frame level Use graph layer to build a graph from each input video. Classify graph output of each time segment in to ¢ classes.
annotation, using only weak video level training labels. 1
Average top k£ time segments to get video level score, where & = max(1, LEJ). Use multi class cross entropy loss.
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Videos as Graphs

Break up each video in to  time segments and extract If two cliques have similar classification, encourage them to have high edge weights. Use Co-Activity Similarity Loss [2]:

features per time segment. Ligsy, =max(0, f(£],£F) — f(b],£f) +0.5) +max(0, f(£/,£7) — f(b;,£]) +0.5)
Represent each time segment as a node Iin a graph.

Nodes’ edge weights are proportional to their similarity. Quantitative Results
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