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Figure 1. Turning that frown upside down: We propose that cap-
sules can model action units as individual part deformations

Abstract

In this paper we motivate the use of capsule networks for
facial action unit detection. We argue that action unit acti-
vations may be seen as local part deformations - for exam-
ple AU 1,2, and 4 are deformations of the part ‘eyebrows’.
Different part deformations in a regular convolutional net-
work must be modeled and represented as separate neurons.
However, with capsule networks a part can be represented
by a single capsule, and its deformations can be modeled by
its direction. We test this hypothesis by creating a capsule
network for action unit recognition. We find that capsule
networks are indeed able to model action units and local
part deformations as well. These lead to state-of-the-art
results on the BP4D and DISFA datasets. We analyse the
learned capsules’ properties and find that capsule magni-
tude correlates with expression intensity and that capsule
pose captures varied attributes such as face size, lighting,
pose, and skin color. Finally we use activation gradient
ascent to visualize capsule direction, and find that a sin-
gle capsule can represent multiple deformations of the same
part, while a single convolution neuron does not.

1. Introduction

Facial Action Coding System (FACS) is a system to de-
fine and name facial movements by their appearance on the
face. Informed by the underlying muscular structure of a

face, FACS annotation can be reliably used for describing
as well as identifying facial expressions and is therefore not
as subjective as grimace scales. There are 24 main facial
action units to describe the human face. Additionally, ac-
tion units can also be coded for intensity on a 4 to 5 point
scale. While, extremely useful, manual action unit coding
is a cumbersome process that can only be carried out by
trained experts. Due to this hurdle, automatic action unit
detection is an important problem for computer vision re-
search.

Facial action unit detection requires identifying subtle
deformations on parts of the face. Consequently, features
that capture local movements around key parts of the face
have been used to train machine learning systems. For ex-
ample, in [1], a seminal work on emotion and facial action
unit understanding, Gabor features were extracted around
keypoints of the face to capture local muscle deformations.
Developing features that capture part deformations well has
also motivated more recent work [43, 19] where separate
convolutional filters are trained to correspond to different
parts of the face. The motivation behind these works is sim-
ilar – the better we are able to model how parts of a face
look and change, the better we can detect action units.

Recently, capsule networks [29, 13] were introduced.
There are two primary reasons why capsule architectures
have advantages over regular convolutional neural net-
works. Intuitively, neurons in a CNN can represent an at-
tribute of the input image – such as the presence of an eye –
and the activation of a neuron represents a confidence value
in whether that attribute can be found in the image. With
capsules the expressive power is increased - its activation
can represent a confidence value in its presence or absence,
and its direction can represent properties of the attribute.
For example, the direction of the capsule can indicate how
rotated the eye is, whether it is open or close, etc. The sec-
ond advantage of capsules is that the additional representa-
tive capacity allows for complex routing procedures. The
pose of a capsule can be used to determine how it is propa-
gated through the network. This is in contrast to neuron ac-
tivations in a CNN that are propagated solely on the basis of
its scalar value. As a result, the routing procedure followed
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by capsule networks can mimic the effect of a much deeper
convolution neural network, trained with various data trans-
formed augmentation techniques.

We believe that the higher expressive power capsules af-
ford to each visual attribute of an image can directly trans-
late to better modeling of local part deformations. Action
unit activations can be seen as local part deformations, and
therefore capsules can be better at detecting and modeling
action units. To give a naive parallel example, if a capsule
learns to detect lips, its pose can represent the type of defor-
mation the lips are in – so different capsule poses can end
up representing action units 12, 14, 15. At the same time,
for a convolutional network, if a neuron comes to be asso-
ciated with lips, it cannot express the pose the lips are in. It
can simply be either active - indicating the presence of lips
– or inactive – indicating that the lips are not present. In
order to represent lips in AU-12 or in AU-15, the network
must learn to associate separate neurons.

Contributions. Our main contributions in this paper are
as follows:

We present results that indicate that capsules are indeed
better than CNNs at modeling local part deformations - and
therefore action units. Previous work [29, 13] have shown
that capsules can model global deformations - so the net-
work can generalize well across image level deformations
(affine transformations of MNIST), or viewpoint deforma-
tions (azimuth changes on small-NORB). In this paper, we
show that capsules can also capture small deformations well
- and may therefore be extremely useful in other areas such
as fine-grained classification.

We develop a capsule network for action unit detection
that gives state-of-the-art results across two large action unit
datasets. On BP4D dataset we outperform the closest base-
line architecture by 14.1% in AUC. We replicate similar
performance gains on DISFA. We additionally present re-
sults on emotion recognition for CK+ dataset, and find that
our architecture generalizes well.

To the best of our knowledge, capsule networks have not
been used to perfom facial action unit detection before. To
this end, we thoroughly analyse and visualize the learned
capsule networks. We visualize the effect of changing cap-
sule magnitude as well as capsule direction via a reconstruc-
tion network. We find that capsules are able to model face
pose, shape, lighting, and skin color, and that capsule mag-
nitude is correlated with action unit or emotion intensity. Fi-
nally, we use activation maximizing gradient ascent to visu-
alize capsule features and compare them with regular con-
volution networks. We find that capsules are able to model
part deformations as changes in capsule direction, where as
individual convolution neurons are not able to model multi-
ple part deformations.

2. Related Work
2.1. Capsule Networks

Capsule networks were first proposed in [29]. The net-
work replaces scalar neurons with higher dimension cap-
sules - so that activation and neuron attributes can be mod-
eled jointly. In addition, capsule direction or pose can be
used to route capsules between higher layers - which re-
places pooling based routing in convolutional networks. In
[13], the authors propose vector capsules whose magnitude
represents the activation of a capsule. Iterative routing is
done using a simple agreement between lower and higher
level capsule directions. In [13] the authors introduce ma-
trix capsules, where a separate value represents the cap-
sule activation. Routing is done using an EM algorithm,
such that the probability distributions of higher and lower
level capsules between consecutive layers are in agreement.
Furthermore, the authors introduce convolutional capsules,
whereas [29] only worked with fully-connected capsules.
In this paper, we use vector capsules, with dynamic routing,
and work with fully-connected capsules only.

2.2. Facial Action Unit Understanding

Papers in action unit understanding have focused on two
broad sub problems - action unit intensity estimation, and
action unit detection.

A number of traditional non-deep approaches improve
action unit understanding by exploiting the co-occurence
patterns between action units - either by developing a
learning model that can help capture inter-AU relations
[34, 37, 7], by developing a model based on prior knowl-
edge of AU relationships and semantics [32, 20], or by using
a data-driven approach to learn important AU relationships
[46]. In particular, [42] jointly learns to identify important
patches, and positive and negative correlations between ac-
tion units for understanding action units.

Traditional approaches have also learned action units by
assistance from facial keypoints - features extracted around
keypoints are used for action unit detection. Some examples
of such approaches are [7, 18, 3, 33, 36].

Deep learning has also been applied to the problem of ac-
tion unit detection with great success [9, 10, 14, 11, 43, 19].
Amongst these, two papers in particular require discussion.
In [43] the authors develop a ‘region layer’ that splits the
incoming convolution map into a grid and develops sepa-
rate convolutional maps for each grid section. The result-
ing map is concatenated spatially and propagated through
the network. In a similar vein, [19] also explicitly design
their deep network to develop features for parts of a convo-
lutional map - however, unlike [43] the spatial regions that
are broken up are based on facial keypoint locations and
their correlations with action units. Both methods explore
a similar idea - to develop separate features for parts of a
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face - as is based on the intuition that different areas of the
face correspond to different AU activations that require their
own unique set of features for identification.

ECCV papers [5, 30]. They both do facial action unit
recognition.

CVPR papers [40, 28] do weakly supervised au recog-
nition. [12] optimizes filter size per au by either expand-
ing or contracting filter sizes from a base size over training.
the model relies on separate models for each action unit.
[39] uses expression indenpendant and expression depen-
dant prior knowledge about action units to learn au classi-
fiers without direct supervision. [41] does au intensity esti-
mation.

2.3. Expressions

Facial expression prediction is a well-explored topic of
research in computer vision. We primarily focus on action
unit detection, but also show qualitative and quantitative re-
sults on expression detection. Some approaches that do not
use deep learning are, [1, 8, 31, 45], of which [1] is of partic-
ular note for creating a pipeline based on extracting features
around facial keypoints, detecting action units, and fusing
action unit detections temporally for emotion detection.

A number of papers also explore emotion understanding
in a simple deep feed-forward classification network setting
[23, 16, 26, 44, 6]. [21, 22] attempt to enforce AU under-
standing to the end of emotion classification. Of these, [16]
is notable for impressive results on expression detection and
demonstrating the importance of data augmentation for the
task of expression understanding. [6] is also an important
paper that proposes a two-stage training pipeline to transfer
VGG-Face [27] features for the task of expression classifi-
cation. Also noteworthy is [15], which uses facial keypoint
locations over time to train a network that is meant to cap-
ture temporal deformations alongside a traditional image-
based CNN. Lastly, [17] proposes an encoder-decoder type
architecture that learns from pairs of neutral/non-neutral ex-
pressions to develop features that are discriminative for ex-
pression classification.

CVPR [35].

3. Approach

Our network comprises two modules - a capsule network
that outputs action unit capsules, and a reconstruction net-
work that takes concatenated action unit capsules, and is
trained to reconstruct the input image. During training, the
capsules for all classes apart from the ground-truth classes
are zeroed-out and used as input to the reconstruction net-
work. In this way, the reconstruction network does not, di-
rectly, affect classification accuracy.

We train our network with color inputs of size 96 × 96.
We train with three routing iterations.

The capsule network architecture comprises of two con-
volution layers, with 64 and 128 filters, and kernel size of 5.
Each is followed by max-pooling and ReLu. The convolu-
tion layers are followed by a primary caps layer with 32 cap-
sules of dimension 8, filter size 7, and stride 3. The resulting
activation map is then fully connected to our class capsule
layer with n capsules, each with dimension 32, where n is
the number of output classes.

Our reconstruction network comprises of 3 fully con-
nected linear layers of dimension 512, 1024, and 1024. The
last layer is reshaped to 32× 32 and then bilinearly upsam-
pled to 96 × 96. In experiments we refer to this model as
‘Ours’.

Additionally, we propose a larger capsule network with
VGG convolution layers as its base. The network is iden-
tical to VGG-16 up to the end of its convolution layers.
The last max-pooling layer is removed. This is followed
by 32 primary capsules of size 8, kernel size of 3 and stride
of 2. The class capsules have dimension 32. The recon-
struction network comprises of three fully-connected lay-
ers with dimensions 512, 1024, and 9408. The output is
resized to 56 × 56 and then bilinearly upsampled to 224
– the input image size. We show results of this model
with the convolution layers initialized with both Imagenet
pretrained weights (Ours-VGG) and VGG-Face pretrained
weights (Ours-VGGF). We found Ours-VGGF was prone
to overfitting. We therefore add spatial dropout at 70% after
the last convolution layer.

We use the margin loss from [29] to train our networks.
The original loss for class c:

Lc = Tc max(0,m+−||vc||)2+λ(1−Tc)max(0, ||vc||−m−)2

where Tc = 1 iff class c is present, m+ = 0.9 and m− =
0.1, vc is the class capsule, and λ is a downweighting term
for negative samples set to 0.5.

For single class classification (such as expression clas-
sification) a softmax operation is applied across all ||vc||.
However, for the multiclass classification setting (action
unit detection), the softmax is not applied. Note that due to
the capsule squashing operation, the magnitude of all output
capsules still lies between 0 and 1.

For action unit detection, the occurrence of different AUs
is highly imbalanced. We therefore modify the margin loss
to work with a class specific weight:

Lc = wc(Tc max(0,m+−||vc||)2+λ(1−Tc)max(0, ||vc||−m−)2)

where wc is the inverse of the frequency of an action unit
occurrence, normalized across all classes to sum to one.

The margin loss is then averaged across all action unit
instances in a batch, and added with average reconstruction
loss for the batch. We use mean square error to supervise
the reconstruction network. The final loss term is:

Lfinal = Lcls + αLrecon

3
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AU LSVM[43] JPML[42] DRML[43] CPM[36] CNN+LSTM[4] FVGG[19] ROI[19] FERA[14] Ours Ours-VGG Ours-VGGF
1 23.2 32.6 36.4 43.4 31.4 27.8 36.2 28.0 46.8 40.0 47.3
2 22.8 25.6 41.8 40.7 31.1 27.6 31.6 28.0 29.1 27.7 39.9
4 23.1 37.4 43.0 43.4 71.4 18.3 43.4 34.0 52.9 42.2 52.8
6 27.2 42.3 55.0 59.2 63.3 69.7 77.1 70.0 75.3 76.1 77.9
7 47.1 50.5 67.0 61.3 77.1 69.1 73.7 78.0 77.6 71.8 79.9

10 77.2 72.2 66.3 62.1 45.0 78.1 85.0 81.0 82.4 81.8 84.0
12 63.7 74.1 65.8 68.5 82.6 63.2 87.0 78.0 85.0 87.3 88.1
14 64.3 65.7 54.1 52.5 72.9 36.4 62.6 75.0 65.7 63.5 67.2
15 18.4 38.1 36.7 34.0 33.2 26.1 45.7 20.0 33.7 36.1 49.2
17 33.0 40.0 48.0 54.3 53.9 50.7 58.0 36.0 60.6 62.1 65.4
23 19.4 30.4 31.7 39.5 38.6 22.8 38.3 41.0 36.9 35.3 47.7
24 20.7 42.3 30.0 37.8 37.0 35.9 37.4 - 43.1 44.3 55.1

Avg 35.3 45.9 48.3 50.0 53.2 43.8 56.4 51.7 57.4 55.7 62.9

Table 1. F1-Frame results on BP4D dataset. Our method outper-
forms all methods that are trained from scratch and even outper-
forms FVGG despite not using any external data.

AU LSVM[43] APL[43] DRML[43] FVGG[19] Ours Ours-VGG Ours-VGGF
1 10.8 11.4 17.3 32.5 17.6 15.7 15.7
2 10.0 12.0 17.7 24.3 18.8 25.7 25.7
4 21.8 30.1 37.4 61.0 50.1 41.3 41.3
6 15.7 12.4 29.0 34.2 44.8 52.8 52.8
9 11.5 10.1 10.7 1.67 21.6 40.7 40.7

12 70.4 65.9 37.7 72.1 65.1 70.1 70.1
25 12.0 21.4 38.5 87.3 68.8 62.5 62.5
26 22.1 26.9 20.1 07.1 45.4 47.7 47.7

Avg 21.8 23.8 26.7 40.2 41.5 44.6 44.6

Table 2. F1-Frame results on DISFA dataset. Our method outper-
forms all methods that follow a similar training protocol as ours.

where α is a weight parameter, Lrecon is the average recon-
struction loss and Lcls is the average margin loss. We set α
to bring the order of the average reconstruction loss in the
same order of magnitude as the averaged margin loss at the
beginning of training. We set α to 1e− 7 at for the smaller
network and 1e− 8 for the larger VGG based model.

4. Experiments
4.1. Action Unit Detection

4.1.1 Datasets

We present results on two widely-used datasets.

BP4D [38]: The dataset contains 328 videos of 31 sub-
jects while completing eight different tasks designed to
elicit emotion. Frames are annotated with 12 different ac-
tion units. In total there are a little less than 140000 frames
that we can use. Following common procedure, we do 3
fold cross validation on subjects, train on 2 folds, and test
on the third. Results are collated across folds and reported.

DISFA [25]: 26 subjects are recorded while watching
videos. Action units and their intensity are annotated for
each frame. Similar to BP4D we conduct 3 fold cross vali-
dation, and collate results across folds.

For both datasets we detect and align faces using [2].
Images are randomly horizontally flipped, rotated, scaled,
translated, cropped, and pixel augmented for data augmen-
tation.

4.1.2 Metrics

We report F1-Frame score, as well as AUC. The F1 score is
the harmonic mean of precision and recall, and used by AU

AU LSVM JPML[42] AlexNet ConvNet LCN DRML Ours Ours-VGG Ours-VGGF
1 20.7 40.7 34.9 49.4 51.9 55.7 65.7 60.3 66.1
2 17.7 42.1 25.8 51.3 50.9 54.5 56.0 54.9 63.7
4 22.9 46.2 36.1 47.4 53.6 58.8 70.2 62.7 71.8
6 20.3 40.0 48.3 52.2 53.2 56.6 71.3 74.0 73.7
7 44.8 50.0 54.3 64.8 63.7 61.0 60.6 58.7 68.5

10 73.4 75.2 54.3 61.4 62.4 53.6 70.8 73.4 70.1
12 55.3 60.5 50.0 60.2 61.6 60.8 74.6 81.2 80.8
14 46.8 53.6 47.7 29.8 58.8 57.0 56.7 56.9 57.5
15 18.3 50.1 34.9 50.6 49.9 56.2 59.4 60.9 71.2
17 36.4 42.5 48.5 53.5 48.4 50.0 66.1 67.4 71.0
23 19.2 51.9 40.5 49.5 50.3 53.9 61.6 60.5 69.6
24 11.7 53.2 31.7 52.5 47.7 53.9 67.6 68.3 77.4

Avg 32.2 50.5 42.2 51.8 54.4 56.0 65.0 64.9 70.1

Table 3. AUC scores on BP4D. We outperform all methods with a
large margin.

AU LSVM APL AlexNet ConvNet LCN DRML Ours Ours-VGG Ours-VGGF
1 21.6 32.7 47.8 44.2 44.1 53.3 57.3 56.0 56.0
2 15.8 27.8 52.1 37.3 52.4 53.2 58.9 61.5 61.5
4 17.2 37.9 44.0 47.9 47.7 60.0 70.4 63.2 63.2
6 08.7 13.6 44.3 38.5 39.7 54.9 67.6 70.2 70.2
9 15.0 64.4 48.7 49.5 40.2 51.5 66.0 67.5 67.5

12 93.8 94.2 55.3 54.8 54.7 54.6 77.1 79.0 79.0
25 03.4 50.4 50.2 48.4 48.6 45.6 75.7 72.2 72.2
26 20.1 47.1 45.8 45.8 47.0 45.3 69.2 67.2 67.2

Avg 27.5 46.0 49.1 45.8 46.8 52.3 67.8 67.1 67.1

Table 4. AUC scores on DISFA. We outperform all methods with
a large margin.

detection methods to report results. AUC is the area under
the curve of the receiver operating curve and captures the
relationship between true and false positives.

4.1.3 Implementation Details

For ‘Ours’ on BP4D we train for ten epochs and learning
rate of 1e-4. For finetuning on DISFA, we transfer convo-
lution features only, and train at learning rate of 1e-4 for
the first 5 epochs, and drop it to 1e-5 for the remaining 5
epochs.

For ‘Ours-VGGF’ we follow the procedure from ROI
and fix all convolution layers up to the beginning of conv5.
We finetune the conv5 layers at a 10 times lower learning
rate, and train for 5 epochs. The capsule, and reconstruction
layers are trained at 1e-4 learning rate. For ‘Ours-VGG’,
we additionally finetune the first four convolution layers,
and train for 10 epochs. For DISFA finetuning we initial-
ize the convolution layers’ weights with the best performing
BP4D model and do XXX. We additionally present results
without any BP4D transfer for DISFA (Ours-VGGFS, and
Ours-VGGS) that uses the same training procedure as used
for BP4D dataset.

4.1.4 Results

Results on BP4D dataset are shown in Table 1 for F1
and Table 3 for AUC. ‘Ours’ shows results after training
our model from scratch and is comparable to all columns
apart from ROI - which builds on VGG-Face features, and
FVGG which is VGG-Face finetuned for AU detection.
Our method outperforms all methods that are trained from
scratch and even outperforms FVGG despite not using any
external data. Overall, our best method outperforms the
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Method Accuracy
AURF[21] 92.2
AUDB[22] 93.7

Khorrami[16] 96.4
GCNet*[17] 97.28
FN2EN*[6] 96.8

Ours 93.7
Ours-Max 96.2

closest baseline on BP4D by 6.5% F1 score with external
data, and our method without any external data outperforms
the closest comparable baseline ([4]) by 4.2% despite not
using any temporal information.

Following common procedure we present DISFA results
after transferring from BP4D model in Table 2 for F1 and
Table 4 for AUC. For all models we outperform the base-
lines significantly. We believe we are able to outperform
baselines that often have more parameters because we are
using capsule networks that are better equipped to model
small facial deformations.

4.2. Emotion Detection

We also explore the use of capsules on the related task of
emotion recognition on the Cohn-Kanade dataset [24]. We
follow the established protocol of 10 fold cross validation,
and average results across folds.

Figure ?? (left) shows our results on 8 emotion classifi-
cation against several state-of-the-art methods. Our results
are comparable to the state-of-the-art. We found that test
results were prone to fluctuate throughout training, and due
to the small dataset size, some folds were prone to overfit.
We therefore also report the best test accuracy we achieve
during training as ‘Ours Max’ to provide an idea of the up-
per limit our model may achieve with more careful training
and hyperparameter searching.

4.3. Visualizing Capsules by Reconstruction

Every class capsule is a 32 length long vector. This vec-
tor can be modified by rescaling its magnitude, or altering
its direction. For every altered version of an input image’s
correct class capsule, we can use reconstruction network to
visualize the capsule.

4.3.1 Magnitude

Since capsule magnitude represents the confidence of our
network in a capsule class’s presence in the image, we ex-
pect increasing capsule magnitude to create reconstructions
that represent that class even more. In other words, we
would expect the reconstruction of a ‘surprise’ capsule with
less magnitude to show less surprise than a reconstruction
of the same capsule scaled to a higher magnitude.

Figure 2. We show the effect of altering magnitude of a class cap-
sule. As the magnitude or activation of a capsule increases, the
intensity of the facial expression also increases.

Figure 3. Reconstructions of test images with increasing capsule
magnitude (left to right) on the BP4D dataset

Figure 2 shows reconstructions of different expression
capsules with increasing magnitude. From left to right the
magnitude was increased from 0.1 to 0.9 at increments of
0.1. The extreme left image is the input image. For each
of the capsules, we see the expression become more pro-
nounced and exaggerated. For example, for happiness (row
1), the smile in subsequent reconstructions becomes wider.
Similarly, for surprise (row 3), a dark spot resembling an
open mouth begins to appear, eventually resembling a full
jaw drop.

We repeat this experiment with our second network, this
time increasing the magnitude of all action units that are
present in the image. For BP4D Figure 3(top) increasing
magnitude results in unique features of the image being ex-
aggerated, such as skin color (3rd row), face and neck shape
(4th and 5th row), or pose (2nd row). At the same time, cer-
tain AUs also become prominent. The open mouth smile in
the 3rd row, the jaw drop in the 4th row, the furrowed brow
in the 2nd row, and the raised chin in the 1st row, all become
more obvious as magnitude is increased.

However, these results are not as clear as the ones from
the expression network, and the changes in action units’
prominence would be hard to see unless we knew what to
look for. This can be due to the training data where ex-
pression changes are spontaneous and subtle and not posed
and exaggerated as in the Cohn-Kanade dataset. They are
unlikey to effect the reconstruction loss function enough to
create a strong supervision signal. Additionally, there are
multiple action units present in every image, so the net-
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Figure 4. We reconstruct an image for its ground truth class while
changing its capsule direction by altering the value of each of its
32 dimensions for the CK+ dataset. The capsule dimensions are
associated with attributes as face scale (first row), face shape (sec-
ond row), and lighting(third row).

Figure 5. We reconstruct an image for its ground truth class while
changing its capsule direction by altering the value of each of its
32 dimensions for the BP4D dataset. The first row shows face
features and skin change. In the second, teeth appear. The neck
in the last row indicates that the capsules have also learned pose
attribute.

work may only prioritize the reconstruction of obvious ac-
tion units that create large changes in the face, and not all
action units.

4.4. Direction

We can also keep capsule magnitude stable, while chang-
ing its direction. For this, we vary the value of each of its
32 dimensions between −0.5 and 0.5, and reset the capsule
magnitude to its original magnitude. In Figures 4 and 5 we
show the effect of changing some capsule directions. The
capsule dimensions are associated with attributes as varied
as face shape, skin color, pose, or the visbility of teeth.

4.5. Visualizing by Gradient Ascent

An alternative method for visualizing capsule features is
by activation maximization. In this approach the input im-
age is treated as a learnable layer, and changed by gradient
ascent for a particular optimization function. This optimiza-
tion function can be the activation of a neuron in the net-
work, the norm of a layer in the network, or any variations
and combinations of the two. The core idea is that as the
network modifies the input image to increase the objective
function, say the activation of a neuron, the input image will
begin to show the visual attribute that the neuron has learned
to encapsulate. This process is popularly refered to as ‘deep
dreaming’ - see [?] for an excellent overview.

Since the output of a capsule is a vector and not a scalar,
we do gradient ascent on its magnitude which is analogous
to doing gradient ascent on its activation. A naive applica-

Figure 6. Deep dreaming expressions. The top row shows the
mean image of each class, and the bottom row shows dreamed
images for the class. Line correspond to lines that appear for each
expression.

AU1 AU2 AU4

AU6 AU7 AU10

AU12 AU14 AU15

AU17 AU23 AU24

Figure 7. Deep dreaming AUs. The boxes show where we see the
AUs. AU lookup table is Figure ??. For AU 10 and AU 23 the
results are diffcult to interpret.

tion of this method is prone to create high frequency and
non-sensical images. It is therefore necessary to regular-
ize the input image. We use gaussian blurring and random
jittering.

4.5.1 Class Capsules

We first visualize the class capsules’ properties for both the
expression and action unit detection networks. For both net-
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Figure 8. Comparing convolution and capsule units. The top row
shows the input images. The second row shows the result of per-
forming gradient ascent visualization on capsule 21on the mouth
area. The bottom row shows the results on the same input im-
ages with convolution unit 498 on a finetuned convolution net-
work. While a single capsule can have high magnitude with many
different types of mouth positions, a single convolution capsule is
only able to maximize activation for a thin upturned corner type
mouth, regardless of the type of input image.

works we input a random noise image, and follow the pro-
cedure above to amplify the magnitude of each class in turn.

Figure 6 shows the results on the expression network.
While the results are not natural - even scary - looking,
they demonstrate that the expression capsules have indeed
learned to identify correct attributes. For surprise the dark
circle below the lips indicates that the capsules have learned
to identify a jaw drop. The forehead lines indicate that
the network is successfully identifying raised eyebrows by
looking for forehead lines. Similarly, for happiness, the di-
agonal lines moving outward from the mouth corners re-
semble the shape of smiling lips, and the lines going diago-
nally down from each side of the nose resemble smile lines.

Figure 7 shows results on a VGG-Face finetuned action
unit detection capsule network, with the attributes of the ac-
tion unit surrounded with a black bounding box. The indi-
cate that for almost every action unit the network is learning
the correct characteristics. For example, for AU1, the net-
work not only learns the inside raised eye brow shape, but
also the corresponding folds in the skin around it. For AU
24, the network learns that the lips appear narrower and that
lines apear around the mouth. For AU 6 the network focuses
on the outside of the eyes where laugh lines appear as the
outer cheek muscles are drawn up.

At the same time these results are enlightening because
they indicate that the network has not completey decorre-
lated co-occuring but non-causal appearance changes. For
example for AU 2, open and smiling mouths are also recon-
structed by the network. AU 2 commonly occurs when peo-
ple are surprised or happy, and so the corresponding mouth
changes have also been learned by the network. These re-
sults indicate that the network is prone to falsely predict AU
2 when someone is laughing even if there eyebrows are not
raised.

Figure 9. Activation maximization visualizing primary capsules.
The first and third row show input test images. The second and
fourth row show the result of activation maximizing for primary
capsule 21 and 5 respectively. The results show that a single cap-
sule is able to model multiple deformations of the mouth area and
eyebrows, and activates differently for different action units.

Figure 10. Activation maximization on the mouth area for capsule
5. While this capsule is able to model changes in brow position
well (Figure 9) it is unable to model differnt mouth positions and
is ‘sticky’ towards a downturned mouth position.

4.5.2 Primary Capsules

In Section 4.3 we show that capsule magnitude is linked to
how pronouced a expression or AU is, and its direction can
be linked to different attributes a face or picture may have.
This is done through the reconstruction network. However,
class capsules are fully connected to the layer below and
therefore do not help us understand how capsules are able
to model local part deformations.

To gain insight in to how capsules model changes in lo-
cal parts of the input image, we perform activation maxi-
mization on the magnitude of primary capsules’ activations.
More specifically, for each action unit, we use gradient as-
cent to maximize the capsule activation magnitude at a spe-
cific activation map location. This process is repeated for
all action units. Unlike in Section 4.5.1, we do not use in-
put images that are random noise since that does not let us
control the direction in which capsules are activated, and
then magnified. Furthermore, since primary capsules are
applied to each image in a sliding window fashion, each
capsule may have very different responses depending on
where its receptive window overlaps with the input image.
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Instead, we use test images that have perfect predictions,
and the highest confidence (or class activation magnitude)
per test subject and per action unit. This allows us to get
primary capsules that have variation in direction naturally,
while also allowing us ignore shortcomings of the network
(perfect predictions), and test across identities.

Spatial locations for each action unit are chosen based on
which part of the face each action unit deforms. In Figure 9
we show examples of different action units becoming more
pronounced with gradient ascent on the same primary cap-
sule’s magnitude. Furthermore, we find that the cosine dis-
tance between activations after performing gradient ascent.
This shows that the same capsule is able to model differ-
ent types of deformations as changes in capsule direction.
However, this is not always true for the primary capsules,
and Figure 10 shows examples of a capsule that is unable to
model deformations around the mouth, but is, on the other
hand, able to model changes around the brow.

For comparison, in Figure 8 we perform similar activa-
tion maximization visualization on convolution units. We
finetune a VGG-Face network for action unit detection us-
ing the same training data. We use the activations of the last
convolution layer after ReLU and max-pooling for this pur-
pose since it allows us to have comparable receptive win-
dow size as the primary capsules, and lets us ignore convo-
lution units that are turned off by ReLU and therefore irrel-
evant to the final prediction. We then forward the same se-
lected test images through the network and record the con-
volution units with the highest activation at the specific spa-
tial locations in the activation map for each action unit. We
then perform gradient ascent on the activations of these par-
ticular convolution units at selected spatial locations. Since
we use the post ReLU activations, it is not always possi-
ble to generate visualizations for all input test images, since
the activation can be zeroed out. However, we do find that
unlike capsules, individual convolution units are not able
to model dramatically different deformations, and either do
not activate or exaggerate a fixed type of attribute or at-
tributes exclusively. This is not surprising given that con-
volution units have scalar outputs, while each capsules has
a vector output that is capable of representing more com-
plex information. As a result while a single capsule is able
to have high activation with downturned, puckered, open,
and smiling - among others - mouths, the convolution unit
maximizes activation with thin mouths with a sharp right
upturn regardless of the input image.

4.6. To do and questions

Add CVPR 2018 related work and baselines. Add disfa
results and improved Ours-VGG results Add results show-
ing overfitting on Ours vggf. Add cosine similarity numbers
in an attractive way.

Questions: How to best show that after activation max,

the capsules become more orthogonal when the resulting
image is different, and less orthogonal when it is the same?
Cosine similarity numbers show this, but i’m not sure how
to add them to the figures. I was thinking of a bar under the
images with the cosine similarity values before and after
max.

Should we add ECCV18 numbers? Would it count as
concurrent work because one of the wacv deadlines was be-
fore eccv?

I’ve removed all the localization routing experiments.
Do you think that’s ok?

5. Conclusions

In this paper, we tested the hypothesis that capsule net-
works are able to model local part deformations in faces
well. We tested this hypothesis by using capsules for ac-
tion unit detection, and found that capsules are indeed able
to model action unit activations well. Our results demon-
strated state-of-the-art results on action unit detection on
two widely-used datasets. While previous work has shown
that capsules are able to model global deformations, we
showed that capsules can also capture local deformations.
This indicates that capsule networks will also be useful for
other tasks where parts of an object need to be modeled
well - such as fine-grained classification, or human pose es-
timation and tracking. At the same time, our results can be
useful for the action unit and facial expression understand-
ing community. We propose a novel architecture for action
unit detection, and push the state-of-the-art numbers in the
area.

In the future, we plan to work on automatic animal fa-
cial expression understanding. For a setting such as an-
imal facial expression understanding where data is scarce
and difficult to both collect and annotate, it becomes critical
to work with models such as capsule networks that are able
to extract rich feature representations with fewer overall pa-
rameters. In addition, the added ease with which capsule
properties can be visualized makes capsule networks an ap-
propriate model working with limited, possibly noisily an-
notated data.
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